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CHAPTER 1. INTRODUCTION

1.1 “Why is Philips interested in liquid ma-

nipulation ?”

This is the question I have been asked the most during my PhD. Indeed, why

would a company known for the production of lamps and electronic devices

be interested in fluids ?

The first part of the answer is that a lot of industrial processes involve liquid

flows. Philips has been for example producing Cathode Ray Tubes for tele-

visions in which the photophores are deposited from a liquid film or CDs and

DVDs where the protective, bonding and even optical layers are spin-coated

on planar substrates or on previously structured layers. The knowledge of

the fundamental properties of flow which determine the behaviour of liquid

in these systems is an obvious prerequisite for the control of the industrial

process. In more recent applications, Philips has developed research in ink-

jet printing of the LCD-display photophores and microcontact printing of

transistors with intermediate resolution from an inked and soft stamp. As

one may expect, Philips is not the only company developing fluid-based pro-

cesses; BASF and Kodak are also using coating techniques for photographic

films, HP ink-jet for printers and IBM microcontact printing.

The second point is that independently of the industrial processes related

to device manufacturing, liquid manipulation is nowadays a topic in its

own right: biotechnologies have driven the research in microfluidics and

the “lab-on-a-chip” concept where the need to manipulate small amounts

of bio-materials usually in aqueous solutions is crucial. Due to the biolog-

ical constraints on the accessible volumes of material the smallest quantity

of material has to be used in order to make chemical reactions or biological

tests. In this case one has to achieve some key steps like the production of

a small drop, the transport of a given volume of liquid, the mixing of two

drops, the splitting of a drop into two sub-drops,. . . Since Philips is nowadays

investigating this field of research to produce health care devices liquid ma-

nipulation has become a relevant issue that has to be addressed both in the

frame of fundamental research and in relation with industrial and practical

constraints.

Finally, in some technological applications, fluid is a key element in the de-

vice principle: the oldest example are Liquid Crystal Displays (LCD) but

more recently Philips has been the first to demonstrate a working display

2



1.2. CAPILLARITY

using fluid actuation in the pixels based on electrowetting1. Electrowetting

is also the key feature of the lenses with adaptative focal length which has

been developed independentely by Philips2 and Varioptic3.

1.2 Capillarity

An interface is the limit between two different media 1 and 2 and associated to

this interface an interface energy ES is defined. The classical representation

of this energy is achieved by considering a molecule of medium 1 close to the

interface. The interactions of the molecule with its neighbours of medium

1 are different from the interactions with its neighbours of medium 2. This

asymmetry results in a net force counteracted at equilibrium by the surface

force. The interfacial energy is proportional to the number of particles close

to the surface and thus to the area of the surface S ( S = a2N2, N being

the number of molecules in one direction, a the mean distance between two

molecules). The proportionality coefficient is the surface tension4 γ: ES =

γ × S. For comparison a body force acts on the total number of molecules

in a volume N3. For a macroscopic particle of volume V and surface S

the number of molecules at the surface is a fraction of the total number of

molecules which decreases when the size of the particle increases. Surface

forces will thus dominate at “small” scales while body forces dominate at

“large” scales. Considering gravity as the body force acting on a volume

V ∝ L3 (L is the typical size of the particle) the potential energy associated

to this force reads EV ∝ ρgL4 where ρ is the density of the material and

g the acceleration of gravity. The surface energy reads ES ∝ γL2. Surface

contribution becomes relevant when ES > EV which means that

L <

√
γ

ρg

Lc =
√

γ/(ρg) is named the capillary length: for typical sizes larger than Lc

the surface energies are negligible compared to gravity while they dominate

1www.research.philips.com/technologies/display/electrowetdisp/
2www.research.philips.com/technologies/light_dev_microsys/fluidfocus/
3www.varoptic.com
4An estimate of the surface tension is obtained by the balance of the surface energy

per molecule γS/N2 with the thermal energy kBΘ: γ = kBΘ/a2

3
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CHAPTER 1. INTRODUCTION

for sizes below Lc
5. For water in air for example, Lc ≈ 3 mm. For sub-

millimeter dimensions which is the typical situation we will consider in the

following the relevant energy is thus surface energy: we will consider capillary

systems where surface energy dominates and gravity will be neglected most

of the time.

1.3 Problems of liquid manipulation

The problem we consider in the following is liquid manipulation at small

scales (i.e. in the capillary framework). In those conditions we are confronted

to the intrinsic behavior of surfaces.

1.3.1 Surface Minimization

At small scales capillary forces dominate and the natural tendency for the

liquid at scales below the capillary length is to form drops as first studied by

Lord Rayleigh [2, 3, 4]. In a capillary problem the liquid morphology min-

imizes the free-energy of the system which means that the liquid minimizes

its surface. In the absence of a solid substrate, for a free drop, the minimal

surface is a sphere while in contact with a substrate the minimization of the

free-energy is performed according to the constraint of the solid substrates

leading to two conditions for the shape of the liquid structure: Laplace’s

equation (1.1) giving the difference of pressure between the drop and its sur-

rounding ∆P as a function of the local mean-curvature M and the surface

tension γ:

2γ ×M = ∆P (1.1)

and the Young-Dupré equation [5] defining the contact angle θY of the liquid

/ vapor interface with the solid substrate:

γ × cos θY = γsv − γsl (1.2)

where γsv (resp. γsl) is the interfacial energy of the solid / vapour (resp. solid

/ liquid) interface. On a planar and homogeneous substrate the liquid volume

forms a spherical cap which gives only a little freedom for liquid manipulation.

However, using composite surfaces, the deviation of the wetting properties

5For more details see e.g. the book by de Gennes, Brochart-Wyart and Quéré [1]

4



1.3. PROBLEMS OF LIQUID MANIPULATION

from this ideal case creates a wide range of shapes accessible to the liquid

structures and thus opens the door to liquid manipulation.

1.3.2 Real surfaces

When dealing with real substrates the first practical observation is contact

angle hysteresis. In practical cases a surface is never planar nor homoge-

neous and the contact angle θ is undetermined between two values defining

the contact angle hysteresis: θa > θ > θr where θa (resp. θr) is the maximal

(resp. the minimal) angle for which the contact angle is static and the con-

tact line is not advancing (resp. not receding). Young’s equilibrium angle

is also within the hysteresis θa > θY > θr. The first consequence, interest-

ing for fluid manipulation is that the shape of the drop can differ from a

simple spherical cap and take more complicated stable morphologies, defined

as local minima of the complex free-energy landscape. Indeed the boundary

condition on the contact angle is partially relaxed and gives a certain degree

of freedom. On the contrary a perturbation to the drop free-surface does not

automatically involve a motion of the pinned contact line: thus, in order to

move the drop it becomes necessary to overcome the contact angle hystere-

sis. The force that has to be applied to move the drop depends then on the

substrate hysteresis. [6, 7, 8].

Using rough substrates, it has also been observed that the wetting properties

of the solid are modified by its roughness, the contact angles being differ-

ent than those of the same planar substrate [9, 10]. For instance on such

topographies the water repellency is enhanced: the drop / substrate interac-

tion decreases and the drop is hardly deposited on the substrate. This effect is

used in nature by many plants as observed in the simple “garden-experiment”

presented on the Fig. 1.1 showing water repellency of plant leaves [11]. This

effect corresponds to a natural evolutionary advantage for the plant in the

removal of dust and solid particles deposited on the leaves [12] which would

otherwise reduce the amount of incident light required for the photosyn-

thesis. Because of their practical interest as self-cleaning surfaces, these

textured surfaces, called superhydrophobic surfaces are studied intensively

nowadays [13, 14, 15, 16]. They also have the property to display several lo-

cal minima of the free-energy landscape leading for example to the so-called

Cassie and Wenzel drops depending on the wetting or not of the substrate

5



CHAPTER 1. INTRODUCTION

Figure 1.1: Example of roughness-induced water repelency and self-cleaning

surface: in the garden, the textured surface of the weed leaves (left) or roses

petal (right) decreases the wettability of the surface. Rain drops slide on the

surface and remove dusts and particles deposited on the surface.

microstructures. Unfortunately the switch from one minimum to the other

is not a reversible transition due to a large hysteresis [14] which is a ma-

jor drawback since reversible and controlled transitions between two shapes

would represent a nice tool for fluid manipulation.

The strategy for fluid manipulation we will consider in the following is based

on the active control of the surface wettability and the accessibility of the

local minima of the free-energy on heterogeneous substrates: the surfaces

are designed to display different morphologies in different regimes of pa-

rameters based on recent studies. On heterogeneous chemically treated flat

substrates extended morphologies and bulges have been observed and stud-

ied by Brinkmann and co-workers [17, 18], Gau et al. [19, 20] and several

other authors [21, 22]. The chemical heterogeneities will produce a surface

with heterogeneous contact angles for a given liquid. The liquid can for

instance be confined along stripes or other structures. On chemically homo-

geneous but topographically structured substrates, the first analysis made on

surface roughness has been done by Cassie [9] and Wenzel [10]. The prob-

lem of drop shapes on solid structures has been studied more recently by

Patankar [23], Parry [24] or Seemann et al. [25]. They studied theoretically

and experimentally liquid morphologies on open microchannels and showed

a full morphological diagram of the liquid structure on these substrates. The

transitions observed give a nice starting point for fluid manipulation. Finally

the ultimate idea would be to combine topographies and chemical hetero-

geneities [26] in order to offer the widest range of choices to fulfil specific

requirements. In addition an active control of the wetting heterogeneities

6



1.3. PROBLEMS OF LIQUID MANIPULATION

would provide the most versatile tool for fluid manipulation.

1.3.3 Finding a driving force

The second problem we are confronted to is to find the active control for fluid

actuation: liquid flow or a switch between two stable states requires a driving

force. The transport of large volumes of liquid using gravity has been known

for ages: Roman aqueducts work on this principle, the flow along the pipes

being gravity-driven. In our case gravity cannot be used as a driving force

since it is too weak. A technological solution exists to artificially supplement

gravity: in spin-coating [27], a centrifugal force is used to produce thin layers

of material. This is a non-reversible passive method used for patterning and

combined with additional photo-lithography steps. The method requires me-

chanical parts and the flow is influenced by previously deposited layers [28]

which strongly limit its interest. Yet the technique has been extended to

microfluidics to actuate the liquid in channels made in a circular disc using

a CD drive mechanism [29].

Different strategies are known to actuate liquid depending on the system or

on the geometry [30]. The surface can be passively treated to display mi-

crostructures [31] or gradient of wettability [31] or of surface roughness [32]:

in this case a drop deposited on the surface will move from the least to the

most wettable area; real-time control is however preferable: the surface ten-

sion of a liquid can be tuned for instance using Marangoni effect. Increasing

the liquid temperature locally results in a net capillary force which produces

a liquid motion. A working device has already been proposed by Darhuber et

al. [33]. The interest is clear in terms of scalability: a system working on that

principle should be scalable to any size contrary to the actuation by a body

force which vanishes when the size decreases. Indeed to have a scalable sys-

tem the requirement is to have the same scaling (in terms of length) between

the driving force and the opposing force. This is for instance not the case

for a gravity / capillary system: gravity scales as L4 and capillarity as L2. A

thermocapillary system uses only capillarity as driving and opposing force.

However in the presence of contact angle hysteresis the scalability vanishes:

contact angle hysteresis acts as an opposing contribution proportional to the

length of the contact line L while capillarity acts as a surface energy L2:

scalability should vanish below a certain length scale [8]. In this case, it is

7



CHAPTER 1. INTRODUCTION

thus important to have systems with the smallest hysteresis possible. Other

systems based on acoustic waves have also been studied [34] but one of the

most interesting idea is to use surface electric forces and the electrowetting

effect [35]. Due to its ease of use and especially the control of the fluid by a

simple voltage, this technique is used in many systems.

1.4 Liquids in an electric field

1.4.1 Electrostatic and electrokinetics

The influence of electric forces on liquid structures can be observed in sim-

ple “bathroom-experiments” when a plastic rod (a hair-brush) charged by

friction on clothes is approached to a flowing liquid filament and deviates

the flow as displayed in Fig. 1.2. The interaction between the charges in

the liquid and the charges at the surface of the plastic rod results is a force

which bends the interface. The field also has an influence on the produc-

tion of small droplets downstream similarly to the experiment described by

Feynman [36]. Using an electric field, liquid can be actuated in confined

geometries such as channels, capillaries [37] or parallel plates [38]; using the

terminology from Tabeling book [39] (p.178), an electric field can move an

ionized liquid (electro-osmosis), charged particles in a steady liquid (elec-

trophoresis), or neutral particles (dielectrophoresis). On capillary structures

like droplets, an electric field can deform the shape by elongating the drop

along the direction of the field [40, 41] and an external electrostatic field has

been used to move droplets on planar substrates on-demand [42, 43]. Finally

the electric force also acts on the contact angle of a drop, this effect being

named electrowetting. The so-called electrowetting effect is linked to dielec-

trophoresis as shown by Jones [44] and has already been used to actuate liquid

in a wide variety of systems, in particular to reach droplet motion [45, 43],

switches between droplet morphologies [46, 47, 48] or actuation in confined

systems [37, 49]. This effect will be presented in more details in the following

section and has been used as the basis of this thesis.

8



1.4. LIQUIDS IN AN ELECTRIC FIELD

Figure 1.2: Example of the influence of an electric field on a liquid structure.

The water flowing from the tap in a bathroom is deviated by the electric

field produced by a plastic hair-brush electrostatically charged by friction on

a sweater.

1.4.2 Electrowetting

The basis of electrowetting has been first described more than one century

ago by Lippmann6 [51] who observed that the surface tension of the interface

between acidic water and mercury is a function of the potential difference at

this interface. He used this effect to develop a capillary electrometer and sev-

eral other applications based on his findings. The study has been continued

when Froumkine [52] studied droplets in electric fields: a conducting drop

wets a metallic plate better in the presence of an electric field. He related

this electrocapillary effect to the capacitance of the electric double layer at

the surface. In practical cases, the main limitation in electrowetting has been

for a long time the breakdown current through the double layer resulting in

a heating of the drop by Joule effect. This problem has been solved in the

early 90’s by the use of an insulating layer between the drop and the sub-

strate [53, 54]: the capacitance of the double layer is replaced by a controlled

dielectric capacitance. The systems are then better controled and therefore

6Lippmann’s paper has been written in French in 1875. An English translation is
available in the Appendix of Mugele & Baret [50]
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used for industrial applications like optical lenses [55, 56], electrowetting dis-

plays [49] or in droplet microfluidics [45, 57].

In a classical electrowetting on dielectric experiment (EWOD) a voltage is

applied between a sessile drop and a substrate. The drop is insulated from

the substrate by a homogeneous insulating layer made out of a dielectric ma-

terial. When the voltage is applied, the electrical charges in the drop and the

opposite charges in the substrate interfere positively generating an additional

surface term in the energy balance and therefore changing the drop contact

angle to a smaller value depending on the applied voltage named Lippmann’s

angle as displayed in Fig. 1.3. The voltage dependent contact angle is given

Figure 1.3: Example of the electrowetting effect. The contact angle of a

conducting drop on an insulated conducting substrate is modulated by an

applied voltage.

by Lippmann’s equation:

cos θL = cos θY +

(
U0

UL

)2

(1.3)

where UL = (2Tγ/ε0εr)
1/2 is the characteristic voltage of the system named

Lippmann’s voltage, γ being the surface tension, εr and T the dielectric

constant and thickness of the insulating layer. The value (U0/UL)2 is the

Lippmann number Li. The quadratic variation of Lippmann’s equation is

however not valid at high voltages and small contact angles. For any system

a saturation voltage is found above which the contact angle does do not de-

pend quadratically on the voltage any longer. This angle is usually of the

order of 30 – 70 degrees depending on the system. The origin of this satura-

tion is still under debate with different interpretations [58, 59, 60, 61]. The

electrowetting effect has already been used in order to induce morphological

transitions between liquid structures [62, 47, 48, 46, 63]. For a review on

10
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electrowetting the interested reader should refer to the review by Mugele and

Baret [50].

1.5 Thesis subject

In the following we will use the variation of the contact angle on the sub-

strate in different systems in order to dynamically vary the wettability of

the substrate. In a first part we will study how such variations influence the

deposition criterion for a droplet from a syringe. Then we will observe how

this simple system can be used in order to induce oscillatory motion of a

drop by a modulation of the contact angle. Finally we will extensively study

the influence of the wettability in a confined system consisting of parallel

open microchannels, the equilibrium situation (third part) and the dynam-

ics (fourth part). The active change of wettability studied here provides a

reversible fluid actuation that has potential interest to provide microfluidic

devices, such as a mixer with the oscillating drops or a cooling device for

chips with the actuation of flow in the microchannels.

Two“Daumenkino”7 are printed on the bottom of each page. On the right

hand side (odd pages), the movie represents the oscillations of a glycerol /

water / salt droplet in electrowetting (1.4 ms between two frames, the voltage

is 85 V rms at 10 kHz); on the left hand side (even pages) the movie represents

the filling and emptying of an open-channel of width 40 µm and depth 20µm

in electrowetting conditions (85 V rms at 20 kHz, 25 ms between two frames).

7From German: Daumen = Thumb, Kino = Movie theater
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CHAPTER 2. DROP DEPOSITION

2.1 Introduction

Dealing with droplet manipulation the first problem is drop deposition: how

to produce small volumes of liquid on a surface in a controlled way. De-

pending on the meaning of ’small’ different solutions are used to extract a

drop out of a reservoir. The simplest way is to use a syringe and increase

the volume of the drop hanging at the tip of the syringe until an instability

occurs which will force the drop to fall down. The detachment criterion has

been studied for a long time as the dripping faucet problem (see for example

Eggers [64] or Finn [65]). This technique gives rather large volumes since the

deposited volume scales with the internal radius re of the syringe times the

square of the capillary length Lc [1]:

V ∝ L2
c × re

Under those conditions, the typical sizes of the drops are hardly smaller than

one millimetre. For example a small syringe of 10 µm radius would produce

a water1 drop of about 0.3 mm, and only a small improvement is achieved

with nozzle shape modifications [66].

A technological evolution from the previous solution is to push the liquid

Figure 2.1: Production of a drop from a syringe of radius re. The volumes V

are close to the maximal volume. V/re is approximately constant: 29 mm3

/0.82 mm ≈ 35 mm2 (Left), 9.5 mm3 /0.26 mm ≈ 36 mm2 (Right).

faster in such a way that inertia becomes significant (see Fig. 2.2). Under the

conditions of ink-jet printing liquids flow when inertia overcomes the surface

forces. In this case, drop sizes as small as 10 µm are produced but the limi-

tations come from viscosity which cannot exceed 20 mPas.

Using an electric field, another type of instability of the liquid surface is in-

1the capillary length of water is of order 2 mm
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2.1. INTRODUCTION

Figure 2.2: Inkjet printing of a light emitting polymer in organic solvent

(diameter ≈ 20 µm, η ≈ 10 mPas, Spectra SX print head, nozzle diameter

24 µm). The liquid is pushed out of the nozzle at 3 m/s by a piezo-actuation

of ≈ 5 µs. (Experiment by Martin Hack, Philips Research)

duced via the so-called Taylor cone which emits small droplets above a critical

threshold [67, 68]. Using this technique named electrospraying the droplets

formed are charged which can be a drawback for some applications. To create

smaller structures, microcontact printing2 – or its “nano-sister” nanoimprint

lithography – is used: in offset printing liquid brought in to contact with a

surface is deposited on a wettable substrate [70]. A last technique is also

starting to be implemented, dip-pen lithography which takes advantage of

capillary condensation on an AFM tip to produce liquid structures3.

In the following we consider a special case of offset printing where drops

hang from a syringe: we investigate the conditions of deposition of the drop

in contact with a flat surface. Contrary to the faucet problem the volume at

which the droplet detaches from the tip of the syringe is not determined by

the comparison of gravity force acting on the drop and capillary forces but

by capillary forces only.

When the drop is brought into contact with a surface the caillary forces de-

pend on the wetting properties of the surface. In the limiting case of full

wetting the liquid will detach easily from the syringe while spreading. On

the other hand for complete non-wetting with contact angle equal to 180 ,̊

the drop will detach only when gravity forces dominate (the faucet problem).

One is therefore interested in the intermediate case of partial wetting. The

problem has been studied in the limit of zero gravity, both experimentally

and theoretically by searching the criterion which determines the detachment

process. We performed experiments using electrowetting which gives a sim-

2for a review see Xia et al. [69]
3see www.nanoink.net
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CHAPTER 2. DROP DEPOSITION

ple way to tune the wettability of the surface. The theoretical model is based

on analytical solutions of the capillary problem while the influence of gravity

is studied using numerical minimization with surface evolver [71].

In the following we present the capillary model based on the description of

drop shapes which will be also used in Chapter 3

2.2 Experiments: Drop deposition

2.2.1 Electrowetting

We used electrowetting on dielectric as a way to continuously modulate con-

tact angles [53] in the following configuration. The substrate is a n–doped

As conductive silicon wafer (Wacker Siltronics AG – resistivity 1.0 − 5.0

mΩ×cm) on top of which a silicon oxide insulating layer (thickness T = 1 µm)

has been thermally grown. An additional hydrophobic coating (Octadecyl-

Tetrachloro-Silane, OTS) has been produced from the liquid phase following

standard protocol[72]. We used water drops with NaCl (0.3 % mass con-

centration) to increase the electrical conductivity. The surface tension of

the liquid mixture has been measured in air using the pendant drop method

(Dataphysics – OCA30 apparatus and software): γL/air = 72.5± 0.5 mN/m

and its density ρL = 103 kg/m3. The whole system is immersed in silicone

oil (Fluka DC200, density ρoil = 937 kg/m3, viscosity ηoil ≈ 10 mPa×s) to

reduce the effect of evaporation on the time of the experiments, increase the

capillary length by reducing the effect of gravity and decrease the contact

angle hysteresis to a value of the order 2 degrees. The surface tension of

the liquid in oil has been measured on the pendant drop (γL/oil = 38 ± 1

mN/m) which gives a capillary length Lc =
√

γL/oil/(ρL − ρoil)g = 8 mm.

For a millimetre drop of water in oil the Bond number characterising the ef-

fect of gravity is Bo< 0.1 for which gravity is expected to be negligible. The

variation of the apparent contact angle θL of a millimetre liquid drop of the

mixture as a function of the applied voltage U0 under oil follows Lippmann’s

equation:

cos θL = cos θY + (U0/UL)2, UL =

(
2TγL/oil

ε0εr

)1/2

(2.1)

as shown in Fig. 2.3. The apparent contact angle at zero voltage (Young’s

16
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Figure 2.3: Electrowetting curve at 10 kHz ac voltage for a water-salt drop

in silicon oil (The electrode diameter is 100 µm). The Lippmann regime is

observed below 50 V. The fit with the Lippmann equation gives θY ≈ 155

degrees and UL = 50V.

contact angle) is θY = 155˚ and the scaling voltage UL = 50V is in good

agreement with Eq. 2.1. The dependence of the apparent contact angle as

a function of the applied voltage displays the expected quadratic behaviour

(Lippmann’s regime) until a saturation voltage above which the contact angle

follows a system-dependent behaviour. In our case the presence of charges

in the insulating layer and the corona instability of the contact line are the

most probable explanations for the observed behaviour. In the following all

the applied voltages are below the saturation voltage which correspond to a

decrease of the contact angle down to 90 degrees. The expression“contact an-

gle”will refer to the apparent contact angle measured at the scale of drop size.

2.2.2 Deposition / Detachment

The experiments have been performed as follows. A voltage is applied be-

tween the electrode and the substrate. A drop of volume V is produced out

of a syringe (EFD - precision stainless tips, external radius re = 255µm,

17
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internal radius ri
e = 125µm). The substrate is approached to the drop and

the contact is established at a distance dc given by the geometry: for droplet

diameter much larger than the electrode, the spherical drop touches the sub-

strate when

dc = 2×
(

3V

4π

)1/3

The drop spreads until its contact angle on the surface has reached the equi-

librium contact angle. In order to prevent any confusion in the following

Young’s angle will refer to the equilibrium contact angle in the absence of

voltage, Lippmann’s angle will refer to equilibrium angle in the presence

of an applied voltage. The substrate height is then decreased step by step

(∆z = 10µm) and pictures of the drop are registered. After the break-up a

picture is taken which gives the maximal distance dmax (with the accuracy

∆z) for which a connected state exists between the drop and the syringe.

Increasing the distance d the drop shape elongates in the vertical direction

as displayed in Fig 2.4 and the area of the solid / liquid interface decreases.

These surfaces are also obtained in a simple “kitchen-experiment” with soap

and water bubbles, an aluminium foil as a flat substrate and a plastic bottle

as shown in Fig. 2.5. The two systems are similar because they are both

pure capillary systems. The drop is smaller than the capillary length which

makes the gravity negligible and a soap bubble is only sensitive to capillary

forces. The main differences in these experiment is that the contact angle

of the bubble is always fixed at 90 degrees independent on the surface while

drops can display different contact angles and that gravity limits the typical

drop sizes to the millimetre scale.

At a critical distance dmax depending on drop volume and contact angle

the liquid / vapour interface breaks. Two situation are observed: in the case

of “large”contact angle and“small”volumes, prior to the breakup, the area of

the solid / liquid interface decreases significantly and the drop detaches from

the solid substrate: the final state obtained is then a drop hanging at the

tip of the syringe. We will refer to this situation as “detachment”. During

the detachment process a tiny liquid drop has been deposited on the solid

surface (see Fig. 2.6). The presence of this tiny drop is likely a consequence of

the dynamics which is not resolved by the camera used here. This effect and

especially the dependence of the drop size as a function of the parameters has
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Figure 2.4: Two modes of rupture for a drop in between a syringe and a

surface. At constant volume (Left): At small contact angle the drop is de-

posited on the surface, at small contact angles it detaches from the surface.

At constant contact angle (Right): Increasing the volume helps to deposit

the drop.

not been studied but could be of interest for the production of small drops

on substrates.

In the case of “small” contact angle and “large” volumes, before the breakup

a capillary neck is formed between the body of the drop and the electrode.

This neck is the weakest point of the structure and breaks when the distance

19



CHAPTER 2. DROP DEPOSITION

Figure 2.5: Capillary surfaces obtained with water soap and a plastic bottle.

The shapes are similar to the droplet shapes of Fig. 2.4.

Figure 2.6: The detachment process leads to the deposition of a tiny drop on

the surface, likely as a result of the dynamic of the instability process.

is large enough leading to a deposited drop on the solid surface. We will

refer to this situation as “deposition”. The contact angle observed in the

experiments displayed above after the deposition is close to Young’s contact

angle meaning that after the breakup no electrical charges are present in the

drop. However it is possible to have a control on the charge of the drop

after the breakup by playing with the electrical parameters of the system.

The contact angle of the drop after the break-up is then close to Lippmann’s

contact angle. This phenomenon will be studied in details in the chapter 3.

In the following, the dynamics of the break-up process is not studied and

is expected to have little influence on the limits between the two regimes

deposition and detachment at least when the syringe moves quasi-statically

(with a speed smaller than the typical speed of the interfaces).

By varying the voltage we tune the contact angle and this way study the
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limit between deposition and detachment. For each contact angle a critical

volume is determined separating both regimes as shown in Fig. 2.7.
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(a) Deposition
(b) Detachement

(a)

(b)

Figure 2.7: Experiments: Two regimes of break-up are observed as a function

of volume and contact angle. The deposition (a) occurs at small contact angle

and large volumes, the detachment (b) occurs at large contact angle and small

volumes. A clear limit is found for the two regimes.

As expected, the critical volume is increasing with increasing contact

angle: indeed, the wettability acts in favour of deposition while the liquid

/ vapour surface tension acts in favor of detachment. Thus decreasing the

wettability will be favourable for the detachment process.

2.3 Capillary model

In order to determine the regimes of distances between the syringe and the

surface for which a connected configuration of the liquid / vapor interface

exists we investigate the shape of the drop undergoing surface forces only

(capillary model) in the particular geometry presented in Fig 2.8.

We will consider the following conditions:

1. the geometry is axi-symmetric: in our experiments, the drops exhibit

elongated shape. In this situation one expects that the axisymmetric
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Axisymmetry
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Figure 2.8: Geometry considered in the following: An axi-symmetric drop in

contact with (i) an ideal substrate (No contact angle hysteresis) and (ii) an

ideal syringe (full pinning at the edges)

modes of instability dominate over the non-axisymmetric modes. In

the opposite case, not studied here, where the drop is pressed by the

syringe, the non-axisymmetric modes become relevant.

2. gravity is neglected: the model is thus purely capillary, the only length-

scale is the radius of the syringe re that will be used to scale all the

distances. The model is universal in the sense that it can be applied to

any liquid and any syringe provided that the dimensions makes gravity

negligible.

3. full pinning at the edge of the syringe, which correspond to 0 degree

contact angle on the bottom of the syringe and 180 degrees on the

sides. This condition allows some simplification in the class of solu-

tions which are studied here but has no influence on the result as soon

as the distance d is larger than the height of a sessile drop at its equi-

librium contact angle. The influence of the wetting properties of the

syringe becomes relevant for distances smaller than this height which

correspond to a situation where the droplet is pressed by the syringe.

Since we are studying the opposite situation, our pinning condition is

well justified.
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4. no contact angle hysteresis on the substrate. It is clear that in the case

where contact angle hysteresis is included in the model it will favour

the deposition of the drop. The model without hysteresis is thus the

extreme situation for which deposition is the most difficult to reach.

2.3.1 Unduloids

The drop is an axi-symmetric constant mean curvature surface. Delaunay

studied these surfaces in the XIXth century [73] and showed that they form

a family of surfaces parametrized by two numbers, which are usually taken

as the minimal radius r1 and the maximal radius r2. As soon as these two

parameters are fixed, the surface (named Delaunay surface) is fully defined.

The Delaunay surfaces are periodic surfaces and include nodoids, unduloids,

catenoids, cylinder and sphere. The sphere, cylinder and catenoid are limit-

ing shapes of the unduloids and nodoids. In the following we will focus on

stretched surfaces which are then represented by the family of the unduloid

(see Fig. 2.9) for which mathematical expressions are given in Appendix C.

The unduloid shape parametrized by {r1, r2} will be noted rr1,r2(z). The

origin of the axis z = 0 is taken at a position where r = r1. From a physical

rr2

r1 r
2,

r (z)

r1 r
2,
(z)α 1 z

Figure 2.9: Typical section of an unduloid. The 3 dimensional shape is

obtained by rotation around the horizontal axis of symmetry.

point of view we observe as stable surfaces only portions of these shapes.

Indeed an unduloid longer than one period is unstable due to the Rayleigh

instability [65, 74]. For nodoids since the shape intersects itself only portions

are observed [17, 75]. Here we observe a portion of the unduloid limited on

one side by the solid substrate and on the other side by the electrode. The

solid substrate intersect the unduloid shape at the coordinates (rs, zs) and

the electrode at the coordinates (re, ze).
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2.3.2 Method

The idea in the following is to solve the system of equations:
rr1,r2(z = ze) = re

αr1,r2(z = zs) = θ∫ ze

zs
πr2

r1,r2
dz = V

ze − zs = d

(2.2)

where rr1,r2(z) is the unduloid shape, αr1,r2(z) the unduloid tilt angle (see

Appendix C), {r1, r2, zs, d} are unknowns4 and re (radius of the electrode),

θ (drop contact angle)and V (drop volume) are the constraints. Using these

three equations for the four unknowns does not give a single set of solution

but an ensemble of parametrized solutions. Moreover, since the problem is

non-linear with respect to the unknowns several groups of solutions are ex-

pected, corresponding to different shapes. All these solutions will be extrema

of the free-energy. The first condition represents the pinning at the edge of

the syringe, the second the contact angle constraint and the third the vol-

ume constraint. A first study of these conditions determines the range of

parameters {r1, r2} which provides solutions:

Pinning – rr1,r2(z = ze) = re – The pinning at the tip gives already limits

for the values of r1 and r2. Indeed according to Fig. 2.9 it is clear that

r1 ≤ rr1,r2 ≤ r2 and thus

r1 ≤ re ≤ r2

The minimal (resp. maximal)radius r1 (resp. r2) has to be smaller (resp.

larger) than the radius of the electrode re. The unduloid being symmetric

with respect to the position of the minimal radius, two possibilities exist: the

position of the electrode is either above (Fig. 2.10, label 1) or below (label

2) the position of the minimal radius, defining two sub-classes of solutions,

the necked unduloids and the un-necked unduloids.

Contact angle – αr1,r2(z = zs) = θ – The inflexion point Pinf of the

unduloid defines a maximal α(max) and a minimal α(min) value for the tilt

4One can also use the set {r1, r2, rs, d}
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1

2

3
4

Figure 2.10: Four unduloids fulfilling the contact angle and pinning con-

straints is found.

angle of the unduloid5 defined by

cos α(min) = − cos α(max) =
r2 − r1

r2 + r1

(2.3)

Thus

| cos αr1,r2| ≤
r2 − r1

r2 + r1

(2.4)

Three cases arise:

1. when the contact angle is such that | cos θ| ≥ (r2 − r1)/(r2 + r1) (i.e.

θ too small or too large) no solution exit with the set of parameters

{r1, r2};

2. when cos θ = (r2 − r1)/(r2 + r1) a single solution is found: the solid

surface is located at the altitude of the inflexion point Pinf;

3. when | cos θ| ≤ (r2− r1)/(r2 + r1) two solutions exist defining two posi-

tions for the solid substrate located on each side of the inflexion point

(see Fig. 2.10, labels 3 and 4); two sub-classes of unduloid solutions are

thus defined, the one with an inflexion point above the substrate sur-

face (named “long unduloids”, label 4) and the one with inflexion point

5Note that α(max) + α(min) = π
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below the surface (named “short unduloids”, label 3). The two radii

on the substrate rs and their corresponding altitude zs are determined

analytically as a function of θ, r1 and r2.

The existence of a solution fulfilling the contact angle constraint requires

then

| cos θ| ≤ (r2 − r1)/(r2 + r1)

which also reads

r2 ≥
1 + | cos θ|
1− | cos θ|

× r1 (2.5)

This equation defines a region in the map {r1, r2}.

Consequences – Combining the first two constraints the solutions are

defined in a domain of s{r1, r2} which is represented in Fig. 2.11. The two

e r1

r2

re

θ = π/2

r

θ

0
0

Figure 2.11: Region of the parameter {r1, r2} where the first two constraints

are fulfilled. For a given θ the slope of the dashed line is determined according

to Eq. 2.5. The solutions have to be found in the dark gray area. The light

gray area vanishes only for the special case θ = π/2.

constraints give for a given set of {r1, r2} the limit of the shape. In the region

where the two constraints are fulfilled the combination of the two conditions

with two solutions gives four possible solutions which correspond then to

four classes of solutions: Short-un-necked, long-un-necked, short-necked and

long-un-necked. The stability of these shapes, provided they exist can be

summarize in the table 2.1.
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unduloid Un-Necked Necked

Short Always Stable (a) Stable or Unstable (b)

Long Stable or Unstable (c) Always Unstable (d)

Table 2.1: Stability of the different subclasses of solutions provided the pa-

rameters {r1, r2} are in the range of admissible values. The labels (a) - (d)

refers to the example shown in the following.

Note – Two other solutions exist as displayed in Fig. 2.12. They however

correspond to a peculiar case of small volumes and small distances not acces-

sible in the experiments and will not be considered in the following without

any influence on the general character of the discussions.

Pinf

5

6

Figure 2.12: Two additional unduloids fulfilling the contact angle and pinning

constraints at small volumes.

Volume –
∫ ze

zs
πr2

r1,r2
dz = V – For a set of parameters {r1, r2} it is clear

that the volume is determined when two extremities of the shape are given.

Here these extremities are given by the two previous boundary conditions,

the radius re and the radius on the substrate rs. The volume of the unduloid

is thus determined by {r1, r2}, two additional radii which delimit the shape

and also the knowledge of the class of the unduloid (see Appendix C). Indeed

depending on the class of unduloid studied the expression of the volume differs

and the volume constraint has to be applied successively to the four classes

of unduloids with the corresponding expression for the volume. Finally the

volume constraint leads to four different unduloids with four different sets of
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parameters {r1, r2}: the distance d, the radius wetted by the drop rs and any

other geometrical quantity defined by the knowledge of r1 and r2 are then

fully determined.

Distance ze − zs = d – This last condition is self-explanatory and corre-

sponds to the constraint that fixes the distance d between the substrate and

the electrode.

Numerical solutions – The numerical resolution of the system of equa-

tion with four unknowns {r1, r2, zs, ze} requires four constraints {θ, V, re, d}.
Instead of solving the non-linear system of four equations with four un-

knowns, we varied the parameters {r1, r2} in order to fulfil the first three

constraints (Eq. 2.2.1-3) in the different classes of solution leaving the dis-

tance d as a free parameter and looked at the parametrization of the solution

in a {rs, d} diagram. The representation in the {rs, d} diagram is arbitrary

and other representations are also possible, for instance a diagram {r1, d} can

also been used. However the representation {rs, d} gives the most readable

view, especially for comparison with experimental data since rs and d are

directly accessible by the experiments contrary to r1 which can be obtained

only indirectly in some cases. rs becomes thus an order parameter in this

system.

Let us illustrate the case of the short-un-necked unduloid: rs is expressed

analytically from the contact angle constraint as a function of r1, r2 and θ.

For a given r1 the volume is a function of r2 only. Under those conditions ful-

filling the volume constraint is a problem at only one variable r2, numerically

determined by the equation Ω(r1, r2, rs(r1, r2, θ)) = V . From the knowledge

of the set {r2, r1, θ}, the set {rs, d} is determined. In the end for a given

set {r1, θ, V } one obtained a solution defining {r2, d} and as a consequence

{rs, zs} and a single point in the {rs, d} diagram. The same operation is

repeated for the three other class of unduloids which thus leads in the end to

four points in the {rs, d} diagram. In Fig. 2.13 (a) an example is displayed

for r1 = 0.5, V/r
1/3
e = 100 and θ = 100 (top) or θ = 130 (bottom) showing

the four unduloids matching the boundary conditions. It is clear on the ex-

ample that all four solutions have the correct contact angle. The volume is

the same and the distance d and the radius rs differ from one solution to the
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other.

The operation is repeated for other values of r1 between 0 and re. In order

to represent the results when r1 varies, the solutions are plotted in a {rs, d}
diagram of Fig. 2.13 (b) for the previous example V/r

1/3
e = 100 (θ = 100

and θ = 130). The positions of the solutions in the {rs, d} diagram are a

function of r1: the four different classes defines 4 branches of solution. The

position of the points obtained at r1 = 0.5 are displayed with their labels.

For a fixed drop volume the shape of the branches and their position in the

diagram depend on the contact angle:

1. at the small contact angle (100 degrees) the branches define two in-

dependent lobes constructed by the union of two branches of solutions

(short-un-necked and short-necked on one hand and long-un-necked and

long-necked on the other hand)

2. at large contact angle (130 degrees) one lobe only is defined.

A more complete diagram for different contact angle between 45 to 166 i̊s

displayed in Fig. 2.14 showing how the lobes merge when θ increases. When

the contact angle increases the two lobes gets first closer and then merge at

the bifurcation point. In this case the bifurcation between two lobes to one

lobe occurs between 121 and 136 degrees. The bifurcation occurs at different

contact angle depending on the volume as displayed in Fig. 2.15. Reducing

the volume increases the size of the lobes and thus increases the interaction

between the two lobes. Thus when θ increases the bifurcation from two lobes

to one is reached for increasing volumes. These diagrams show how the dif-

ferent shapes interact when the constraints are changed. The lobes are not

independent and move in the diagram. They do not intersect simply but

instead merge or split into new structures indicating bifurcation phenomena

controlled by the two parameters volume and contact angle. Moreover the

bifurcation is observed in all the possible diagrams {rs, d}, {rs, r1}, {rs, r2},
{r1, r2} as displayed in Fig. 2.16 which indicates that the choice made of the

representation {rs, d} do not influence the observations. Complex and inter-

esting phenomena occur close to the point where the two lobes merge into

one which defines two values {θc, Vc} of contact angle and volume. In the

following we will refer to this special point where the two lobes merge into

one as the bifurcation point. The full description of the bifurcation [76]
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Figure 2.13: Solutions of the capillary problem (a) At V/r3
e = 100, for θ = 100

degrees (Top) and θ = 130 degrees (Bottom), fixing r1 = 0.5 four solutions are

found with different values of d and rs. From left to right, the solutions are

respectively called short-un-necked, short-necked, long-un-necked and long-

necked unduloids. (b) Varying r1, the solutions define four branches in the

{rs, d} map. For θ = 100 degrees, the branches define two independent lobes

(dashed line), for θ = 130 degrees, a single lobe is defined (dots).

is not required here since most of the complex features of the bifurcation

are restricted to a very narrow region around the bifurcation point {θc, Vc}
not accessible within the usual experimental accuracies of the wetting exper-

iments. Indeed in Fig. 2.17 one can see that the bifurcation from two lobes
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Figure 2.14: V/r3
e = 103, the shapes of the lobes as a function of con-

tact angle: at small contact angles (full line) two lobes are defined (θ ∈
{45, 60, 75, 91, 106, 121}). At larger contact angle a single lobe exists θ ∈
{151, 166}. The dot-dashed line corresponds to the height of a sessile drop

of volume V/r3
e = 103.

to one is complete within 1.5 degrees which is already around the maximal

accuracy that one can expect for the measurement of drop contact angles.

Diagrams – In the following we will used {rs, d} diagrams which link the

order parameter rs to the control parameter d via the Eq. 2.2. In order

to determine the exact shape of the unduloid, it is necessary to determine

either rs or d. The problem is thus fully solved by fixing the distance d:

the solutions are given by the intersections of the different branches with the

horizontal line corresponding to the constant d. The stable unduloid has to

be searched in this intersections. But this does not give the solution since

the stability of the shape is not warranted. Starting at small distances, the

stable branch is the one called (a). When the distance inreases, the radius

of the stable unduloid shrinks (rs decreases). A distinction has to be made
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Figure 2.15: Bifurcation at different volumes: at fixed contact angle (here

θ = 121˚), the transition is reached by increasing the volume (V/r3
e ∈

{103, 104, 105}). The distances are now rescaled by the volume to fit on

the graph.

between the behaviour at 100 and 130 degrees. At 100 degrees, the decrease

of rs stops at the moment where the stable shape becomes necked. Then for

increasing distances rs increases again up to a final point where no solution

exist in this classes. At large contact angle (here 130 degrees) rs decreases

continuously while going from the class (a) to the class (c). At a maximal

distance no stable solutions are found in this class. The instability process

during the break-up is thus fundamentally different in the two situations.

The break-up will occur at the weakest point, i.e the capillary neck for small

contact angles or the substrate surface for large contact angles in agreement

with the experimental observations.

In Fig. 2.14 we can follow different characteristic points. The meeting point

of two branches gives the bifurcation from the basic shape short-un-necked

unduloid to the shape which will destabilize by an increase of d, either a

short-necked or a long-un-necked unduloid. The extremum of each lobe give

the limits of stability of the unduloid binding the syringe to the substrate.

32



2.3. CAPILLARY MODEL

0.5 1 1.5 2

2

4

6

8

d

1 1.5 2 0.5 0.75 1

2

4

6

8

0.5

1

1.5

2

r s

0.5

1

1.5

2

1 1.5 2
rs

0

0.5

1

r 2

1 1.5 2
r2

0.5 0.75 1
r1

1

1.5

2

θ < θc

0.5 1 1.5 2

2

4

6

8

d

1 1.5 2 0.5 0.75 1

2

4

6

8

0.5

1

1.5

2

r s

0.5

1

1.5

2

0.5 1 1.5 2
rs

1

1.5

2

2.5

3

r 2

1 1.5 2
r2

0.5 0.75 1
r1

1

1.5

2

θ > θc

Figure 2.16: Bifurcation for a given volume V/r3
e = 32: the bifurcation is

observed in all the possible diagrams {rs, d}, {rs, r1}, {rs, r2}, {r1, r2}. Left:

θ = 100.5 ,̊ right: θ = 102 .̊
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Figure 2.17: Bifurcation for a given volume V/r3
e = 32: the bifurcation is

complete in less than 1.5˚. Top: {rs, d} diagram showing the bifurcation

from two lobes to one. Bottom: {r1, r2} diagram. The full black line is given

by Eq. 2.5 showing that no couple {r1, r2} is found below this line.

By changing the contact angle the variation of the position of the extremum

dmax is determined and displays a cusp (see Fig. 2.18): this cusp represents

the bifurcation between the two modes of rupture. When the other limiting

shapes are added to the graph, the cusp appears to be a meeting point for

all the different shapes (see Fig. 2.19). At the transition the shape of the
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Figure 2.18: Limit of existence of an unduloid of volume V/r3
e = 100. The

cusp separates the two modes of rupture: at the tip of the syringe (θ < θc)

or at the solid surface (θ > θc)

drop has to be consistent with the 4 different branches of solution: this

corresponds to a situation where the inflexion point is on the surface and the

neck radius is exactly equal to the radius of the syringe. Due to the complex

scenario of the bifurcation, this argument is only an approximation. However

for a fixed volume, the contact angle θ
(1)
c (V/r3

e) at the bifurcation obtained

by this argument is always very close to the one obtained by looking at the

contact angle θ
(0)
c (V/r3

e) for which the lobes merge [76]. The discrepancy

δθ(1) = |θ(1)
c − θ

(0)
c | are displayed in Table 2.2 showing that the error made on

the determination of the contact angle at the bifurcation is within 0.5 f̊or all

rescaled volumes above 16 and within 0.1̊ above 64 which gives an error much

smaller than the experimental error that can be made on the determination

of a contact angle.

The height of the sphere delimits the area between nodoids and unduloids.

It has to be noticed that close to 180 degrees the nodoid shape has to be taken

into account since the unduloid limit intersects the sphere for contact angle

smaller than 180 degrees which can be interpreted as a geometrical effect on

the volume due to the size of the syringe (see Fig. 2.20). This effect concerns

however a small area of the diagram and is not investigated in more details in

the following. Moreover the contact angles and volumes required to observe
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V/r3
e θ

(1)
c θ

(0)
c δθ(1)

16 91.207 91.65 ± 0.05 0.5

32 100.967 101.15 ± 0.05 0.2

64 109.371 109.45 ± 0.05 0.1

128 116.805 116.83 ± 0.01 0.03

256 123.453 123.46 ± 0.01 0.02

512 129.427 129.43 ± 0.01 0.01

1024 134.794 134.80 ± 0.01 0.01

Table 2.2: Values of contact angle (in degrees) at the bifurcation obtained by

looking at which value θ
(0)
c the two lobes merge into one and values of contact

angle θ
(1)
c (in degrees) by using the argument that the transition is obtained

for a unduloid with a minimal radius equal to the radius of the electrode and

an inflexion point located on the solid surface. The error is always smaller

than 1 degree.

it are not reached in our experiments reducing the interest of the analysis.

The same argument is valid for the area below 45 degrees.

The value of the critical contact angle corresponding to the cusp depends on

the volume of the drop considered. Varying the volume the curves dmax(θ)

are plotted and displayed in Fig. 2.21. When the volume decreases the cusp

moves to smaller values of the contact angle which represents the fact that

the deposition / detachment limit is shifted to smaller contact angles. The

extremum is also increasing to converge at 90 degrees to a value close to the

limit of stability of a liquid cylinder. From the Rayleigh instability a liquid

cylinder will become unstable when its height is larger than its circumference.

Here this condition gives a volume Vπ/2 ≈ 14.289. For volumes smaller than

the critical volume Vπ/2 another bifurcation has been observed with another

subclass of unduloid and the bifurcation occurs for contact angles smaller

than 90 degrees. In this situation however, a liquid drop will always be

deposited on the surface since the wettability is favourable. The volume of

the drop compared to the volume of the drop still hanging at the tip will likely

depend on the dynamics of the instability, the competition between the speed

of motion of the contact line and the pinch-off of the capillary neck. This

problem has not been studied but could be of interest in problems linked to
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Figure 2.19: Limits of existence of the different Delaunay surfaces for a vol-

ume V/r
1/3
e =100. (IV) nodoid, (I) short-un-necked unduloid, (IIa) the locally

stable short-necked unduloids and (IIb) the locally stable long-un-necked un-

duloids. The maximal distance for which a stable unduloid can be found is

represented by the full line and the cusp appears to be at the meeting point

of the four classes of solutions.

R

2R 1/3

Figure 2.20: Close to 180 degrees dmax is smaller than the height of the

sphere. Sketch of such a situation in an extreme case. The contact angle is

180 degrees. Both spheres have the same volume ( 2π/3) and the detachment

occurs below the sphere height.

offset printing [70].

Since the cusp is the meeting point of all the different classes of unduloids
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Figure 2.21: Calculated dmax as a function of the contact angle for different

volumes V/r3
e ∈ {104/3, 105/3, 102, 107/3, 108/3, 103, 104, 105}. For large vol-

umes dmax is gettting closer to the height of a spherical cap (dots).

solution the unduloid at this very point is expected to be defined by r1 = re

and the inflexion point Pinf on the substrate; the radius on the substrate is

thus given by rs =
√

r1 × r2. The volume of such a shape is then computed

and the variation of the critical contact angle as a function of the volume is

obtained and displayed in Fig. 2.22. The transition displays a divergence at

180 degrees where a simple scaling has been found giving a close approxima-

tion of the bifurcation limit (See Fig. 2.23).

This scaling is obtained by looking at the shape of the drop at the meeting

point of all the branches. The contact angle at the surface is obtained by the

argument that the inflexion point is located on the substrate surface:

cos θ =
r2 − r1

r2 + r1

(2.6)

which is rewritten using the fact that the pinning condition at the tip is

fulfilled for r1 = re = 1:

r2 =
1− cos θ

1 + cos θ
(2.7)

At large contact angles the transition occurs for a volume such that r2 � r1.
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Figure 2.22: Relationship between the volume and the contact angle that

separates the two modes of rupture (deposition (a) or detechment (b)). For

increasing volume the cusp is located at increasing contact angle.

For such an almost spherical cap, the relation between the volume of the

drop and r2 is given by the geometry:

r2 =

(
3V

4π

)1/3 (
2− 3 cos θ + cos3 θ

)−1/3
(2.8)

Combining both equations this leads to:

V 1/3
c ≈ 2×

(
4π

3

)1/3

× 1

1 + cos θ
(2.9)

The transition occurs close to 180 degrees and on a relative broad extension.

Considering the full capillary problem this expression gives a really good

approximation of the volume that is possible to deposit. We can calculate

the contact angle at the bifurcation θ
(2)
c using Eq. 2.9 and the error δθ(2) =

|θ(2)
c − θ

(0)
c | made and the error made compared to compared to the previous

θ
(1),(2)
c : the results are summarized in Table 2.3 and show that the simple

scaling argument is valid for contact angles larger than 130 degrees within 2

degree accuracy.
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Figure 2.23: Comparison of the result of the model (solid line) with the

power-law found from the scaling analysis (dashed line).

V/r3
e θ

(2)
c θ

(0)
c δθ(2)

16 73.77 91.65 ± 0.05 17

32 89.11 101.15 ± 0.05 12

64 101.19 109.45 ± 0.05 8

128 111.11 116.83 ± 0.01 5

256 119.49 123.46 ± 0.01 4

512 126.66 129.43 ± 0.01 3

1024 132.85 134.80 ± 0.01 2

Table 2.3: Contact angle θ
(2)
c (in degrees) at the bifurcation obtained from

the scaling argument compared to θ
(0)
c . The error is significant close to 90

degrees but is less than 2 degree for contact angle larger than 130 degrees.
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2.4 Comparison with the experiments

For U0=35.7 V (θ = 118 ± 2 degrees), the profile of the drop has been

extracted (see Fig. 2.24). The profiles are correctly described by unduloids
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Figure 2.24: Experimental profiles obtained in the case of the droplet depo-

sition (left) or detachment (right). U0=35.7 V (θ = 118± 2 degrees)

as shown in Fig. 2.25 for U0 = 35.7 V (θ = 118± 2 degrees) and V = 13µL.

However a slight asymmetry is visible on the profiles since the parameters

fitting the left and the right profiles are not equal. This slight asymmetry is

evaluated as the difference between the maxima radii of the unduloids fittig

the left and right profiles. In this case, the asymmetry is of the order of 3%

since the relative error on the maximal radius r2 is ∆r2/r2 = ±1.5% which is

expected to have only a small influence compared to an ideal symmetric case.

The asymmetry gives also the error made on the determination of the volume

which is calculated on the images assuming a symmetric profile. The relative

error on the determination of the volume ∆V/V is then ∆V/V ≈ 3∆r2/r2 =

±4.5%. As expected, as long as the size of the drop is small compared to

the capillary length, the profiles are in good agreement with the predicted

unduloid.

To better compare the experimental data with our model the distance

d and the radius rs have been extracted on the pictures. These measure-

ments are rescaled by the radius of the electrode and plotted as a function of
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Figure 2.25: Comparison of extracted profiles and unduloids. The profile are

slightly asymmetric which is confirmed by the values of the parameter of the

unduloid fitting the profiles: for the left hand profile r1 = 0.85 and r2 = 2.42

while for the right hand profile r1 = 0.85 and r2 = 2.50

contact angle and volume as displayed in Fig 2.26. It should be mentioned

that the model curves are obtained without any fitting parameters. The con-

tact angles and volumes measured on the pictures are used to calculate the

unduloid shapes and produce the {d, rs} graphs. The main features of the

model curves are reproduced by the experimental curves: the curvatures of

the different lobes and the transition between the two different scenarios of

rupture.

The experimental limits between deposition and detachment have been plot-

ted and compared to those predicted by the transition shape of the unduloid

(Fig. 2.27). The limits are found in extemely good agreement in the range 90

to 120 degrees. Above this value the capillary model departs from the exper-

imental data. Indeed the volume at the transition increases which therefore

increases the influence of gravity on the drop shape. This point is confirmed

by numerical simulation (Surface Evolver) using the capillary length Lc ≈ 8

mm. The experimental and numerically modelled data are found in good

agreements and show that gravity influences the transition from volumes as

small as V
1/3
c /re ≈ 7.5. This dimensionless volume corresponds to V ≈ 10

µL. This value gives a Bond number Bo ≈ 0.02. In our case gravity plays

a role from values of the Bond number as small as 0.02, mainly due to the
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Figure 2.26: {d, rs} diagrams. No fit parameter have been used in the

comparison: volumes and contact angle used in the calculation are within

the range of accuracy of the experimental values. Top-left: V/r3
e =

{290, 160, 118}; top right V/r3
e = {108, 96}; bottom left: V/r3

e = {56, 54, 40};
bottom right: V/r3

e = {41, 31, 24, 18} N correspond to detachment, H corre-

spond to deposition.

vertical extension of the drop shape during the removal of the syringe: the in-

fluence of gravity is enhanced on such an extended shape. The consequence is

that the deposition / detachment transition is extremely sensitive to gravity

effects. From a physical point of view it is clear that the deposited volume

at a contact angle of 180˚is obtained by the balance of gravity force and

surface forces and thus leads to the volume of a dripping drop [5]:

V 1/3/re ≈
(
10× (Lc/re)

2
)1/3 ≈ 21

Thus one expect a crossover from the capillary regime at contact angle close

to 90˚to the dripping regime at contact angle close to 180 .̊ This crossover

is observed in particular in Fig. 2.28 where experimental data obtained for
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Figure 2.27: Comparison of the model with the experimental data. The

agreement is correct as long as gravity is negligible. Gravity effects have

been modeled using Surface Evolver.

Lc/re have been added.

2.5 Conclusions and discussions

A capillary model has been developed to study the deposition of a drop on a

hydrophobic substrate of variable wettability. The wettability is experimen-

tally modulated using the electrowetting effect and Lippmann’s angle is used

as a boundary condition in the capillary model: electrowetting acts only as

a capillary term following Lippmann’s equation. We restrained ourselves to

contact angles larger than 90 degrees for which the quadratic relationship

of Lippmann’s equation is correctly reproduced experimentally. Under these

conditions the limit between the deposition and detachment regimes is in

agreement with our capillary model. In the model the limit is given by the

point where there exist no stable unduloid surface fulfilling the boundary

constraints of volumes and contact angle. More generally the model fully

determines the static shape of the drop in the conditions of axi-symmetry

and pinning at the edge of the syringe when the syringe is slowly pulled away
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Figure 2.28: Crossover from the offset printing regime to the dripping drop

regime. The black and gray triangles correspond to Lc/re = 32, the red

and orange to Lc/re = 10. The blue line corresponds to surface evolver

calculations at Lc/re = 32.

from the substrate. The capillary model shows three different levels:

1. model 0, the rough model describes the drop in the limit of large contact

angles. In this case the results are in reasonable agreement with the

experimental data. It gives the minimal volume that can be deposited

as

Vc =
32π

3

1

(1 + cos θ)3
× r3

e

The accuracy of the model is within 2 degrees for volumes larger than

103r3
e .

2. model 1, the approximated model: it gives the minimal volume that

can be deposited for all contact angle but only as a numerical result.

The error made with this model is less than 0.5 degrees for contact

angles larger than 91 degrees;

3. model 2, the exact model [76]: it describes the details of the scenario

of the bifurcation.
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Depending on the level of understanding required one can refer to the results

coming from the different model.

It has been shown that the volumes deposited with this method scale with

the radius of the syringe to the power three:

V ∝ r3
e

which is a huge improvement compared to the dripping faucet problem where

the capillary length imposes an additional scaling:

V 1/3/re ≈ 2.1× (Lc/re)
2/3

This value is expected to be recovered for a contact angle of 180 degrees

which determines the crossover between the capillary assisted deposition (off-

set printing) to the gravity driven dripping drop.

The analysis made here is of potential interest in microfluidics, for in-

stance to determine the minimal volume that can be deposited by a syringe

in the case of spotting of microarrays on a surface of known wettability.
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3.1. INTRODUCTION

3.1 Introduction

In a classical electrowetting experiment the electrode used to apply the volt-

age to the drop is immersed inside the drop for any value of the voltage. In

our experiments a cylindrical electrode is placed at the top of the drop at a

distance d from the substrate surface. When the voltage is applied the drop

spreads and can detach from the electrode. The detachment will occur when

the spreading of the drop is sufficiently large to destabilize the capillary neck

which forms between the drop and the electrode. It is clear that the limit

for the drop detachment depends on the values of U0 and d. The goal in

the experiments described in the following is to study the behaviour of the

drop after the breakup. Our system displays the same type of behaviour as

already observed by Klingner et al. [47] the drop oscillating between a con-

nected and a disconnected state as sketched in Fig. 3.1. In contrast however,

the electrode introduces an additional length-scale, the diameter of the elec-

trode which was not present for a drop between two plates.

Figure 3.1: Sketch of the experimental set-up. The drop at zero voltage

spreads when the voltage is applied and display a capillary neck which leads

to a disconnected state when the neck becomes unstable.

3.2 Materials and methods

3.2.1 System

The material used is a typical electrowetting material made of a conductive

substrate, an insulating layer, a drop of a conductive liquid and a platinum

electrode immersed in the drop and the voltage is applied between the elec-

trode and the solid substrate. The solid substrate is a conductive n+ arsenic

doped silicon wafer (conductivity 1-5 mSm) on top of which a 1 µm thick
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silicon oxide insulating layer has been thermally grown. An additional hy-

drophobic layer has been deposited on the surface (OTS monolayer) from

the liquid phase following Sagiv [72]. The liquids used are mixtures of water,

glycerol and NaCl in various composition which allows to change the viscos-

ity and conductivity of the drop without modifying significantly its surface

tension. The whole set-up is immersed in a silicon oil bath (Wacker silicone

oil AK 5, viscosity η = 5 mPas) in order to prevent evaporation on the time

of the experiment, to reduce contact angle hysteresis and to increase the cap-

illary length. The contact angle of the solution under oil measured using a

side view of sessile drop is 155˚on the OTS layer with less than 5 degrees

hysteresis in both cases and about 140˚for glycerol. The relative density of

the liquids in the silicone oil is ρ =0.2-0.3 103kg.m−3, for viscosities η ranging

between 1 to 100 mPas. The voltage U0 applied between electrode of radius

re = 125 µm and the substrate goes typically from 0 to 100 V rms at a fre-

quency ranging from 1 to 20 kHz. A Rm=10 kΩ resistance has been included

in series with the drop and the current through the circuit is measured via

the potential difference at the boundaries of the resistance (see Fig. 3.2).

At a given voltage U0 when the drop is in contact with the electrode the

Rm

Figure 3.2: Sketch of the experimental set-up. The drop at zero voltage

(dashed line) spreads when the voltage is applied and display a capillary

neck (full line) which can be unstable leading to a disconnected state (dot-

and-dashed line). Rm = 10kΩ is used to measure the current through the

circuit.

electrowetting effect forces the drop to spread from Young’s contact angle θY

to Lippmann’s contact angle θL [51, 53] as displayed in Fig. 3.3 for a water
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drop.

Figure 3.3: Electrowetting curve for a water drop on a silicon wafer coated

with an 1 µm insulating layer and additional OTS hydrophobic coating. UL

= 50V

The experimental variation of the contact angle follows Lippmann’s equa-

tion (2.1) and the fit of the experimental data with a parabolic function of

the voltage gives UL ≈ 50V in reasonable agreement with the physical prop-

erties of the system.

3.2.2 Electrical properties of the drop

The drop behaves in the system as an electrical component [60] with a finite

conductivity and a capacitive contribution due the solid / drop interface. A

leakage current is usually modelled by a large resistance RL in parallel to

this capacity [60]. For simplicity in our case the insulating layer is modelled

as perfect insulator (RL = ∞; no leakage current) defining a capacitance

C depending on the surface wetted by the drop on the substrate (Fig. 3.4);

the effects of the leakage currents will be invoqued when necessary. The drop

electrical resistance is modelled by a resistance R0
d which depends on the exact

shape of the free-surface and has two parts, an intrinsic part representing the
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Figure 3.4: Sketch of the electrical properties of the system. Most of the

impedances are time-dependent.

resistance of the drop body Rd and a part representing the neck resistance

when this one exists Rn. The system has thus three major electrical parts, the

resistances Rm and R0
d and the capacity C. The typical values of this three

major impedances of the system are now discussed. The typical value for the

drop resistance, in the case where the electrode is completely immersed (no

neck, Rn = 0) in the drop is roughly given by:

Rd ∝
h

σr2
0

where r0 and h are the typical radius and height of the drop. Since h ∼ r0

for a spherical drop this leads to

Rd ∝
1

σr0

∼ 1− 10kΩ

for the range of parameters used in the following. On the other hand, the

capacitive impedance reads:

ZC ∝
1

Cω
∼ T

ε0εr2
s

rs ≈ r0 is most of the cases, and thus for a microliter drop ZC ∼ 100 kΩ

for the maximal frequency used here (20 kHz). Considering the figures ob-

tained here, the electrical circuit is mainly driven by the properties of the
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capacitance which is in agreement with the shape of the electrowetting curve

which showed that resistances were negligible (Rd � ZC). Moreover, the ex-

act evaluation of the resistance of body of the drop is not relevant since it is

negligible compared to the capacitive impedance. In the following we will see

that the electrode is not immersed in the drop for every voltages but that the

connection drop - electrode involves a capillary neck. The electrical circuit is

now modified. Assuming that the capillary neck is a cylinder of radius equal

to the electrode radius and of length proportional to its diameter, this very

piece of fluid behaves as a resistance Rn in series with the capacitance and

the resistance of the body of fluid which can be neglected compared to the

drop capacitance. The evaluation of the resistance reads now:

Rn ∝
re

σ × r2
e

The typical value of Rn is close to 100 kΩ which becomes comparable to

the capacitive impedance. In the presence of a capillary neck, the electrical

circuit is modified as displayed in Fig. 3.5. Finally in the absence of a connec-

tion between the drop and the substrate, the system is once again changed.

The capacity is present but the resistance of the connection is infinite. There

is still a capacitive link through the air or oil gap but the corresponding

impedance can be seen as infinite compared to the solid surface impedance.

As a consequence all these cases are included in a single electrical circuit,

a capacitance in series with a resistance, both function of the drop geome-

try, the capacitance typical values being borned while the resistance varies

between R0
d =0 (limiting case of an electrode immersed in the drop) and

R0
d = ∞ (limiting case of an electrode disconnected from the drop); in the

presence of a capillary neck 0 < R0
d < ∞.

3.2.3 Variation of the electrical current

The electrical current through the circuit is given by the values of the different

impedances and varies during the spreading due to the change in the surface

drop/substrate and the variation of the neck size.

During the spreading – Assuming a drop spreading in the fully con-

nected state, the circuit is made of a resistance in series with a capacitance.

The resistance and the capacitance define the time-scale Rm × C ≈10−6s
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Figure 3.5: Extremal model for the drop electrical properties. The only

interesting impedances are the neck resitance function of time and the drop

capacitive impedance.

at which the circuit follows the forcing. Assuming the capacitance constant

during this time-scale (which is a fair approximation since the contact line

moves according to an hydrodynamic time-scale at least 3 orders of mag-

nitude slower than Rm × C), the charge q in the capacitance is given by

q = C × U0. Since the current i is simply dq/dt and using a sinusoidal forc-

ing then the current is proportional to the capacitance and thus to the surface

of the drop. Since the drop spreads under the influence of the voltage, the

current increases during the spreading.

i(t) ∝ C(t)

During the pinchoff – Assuming now that the drop detaches from the

electrode through the break-up of a capillary neck. Now the electrical re-

sistance Rn at the capillary neck decreases and gives the time-scale of the

variation of the electrical parameters. Since the resistance diverges at the

pinchoff (at t = t0), there will be a time t1 < t0 above which the resistance

dominates over the capacitance. In this case the capacitance is taken constant

and equal to zero. In this state, the system is simply a resistance plugged at

the boudaries of a voltage source. The current is inversely proportional to the

resistance and goes to zero. The variations of the current are determined in

the latest stage by the pinch-off hydrodynamics coupled with the electrical

properties of the neck.

i(t) ∝ 1

Rn(t)
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In the disconnected state – In the disconnected state, the switch is off,

the current is zero except for a small noise.

i(t) = 0

The variation of the current between connected and disconnected state

provides thus information on the state of the drop and is used as an electrical

measurement of drop oscillations frequency. The current is recorded using a

National Instruments Acquisition Board at 4×106 samples per second which

gives sufficient time resolution of a 20 kHz signal.

3.2.4 Influence on the electrowetting effect

Not only the electrical circuit is modified by the resistance of the neck but

the electrowetting effect in itself also: the contact angle is in principle a con-

sequence of the applied voltage U0; here it will be determined by the voltage

across the capacitor which is the residual of the applied voltage after the loss

caused by the electrical resistance. In consequence when the loss of voltage in

the capillary neck becomes significant, the electrowetting effect is influenced

and the contact angle will be modified (a priori larger than expected): the

visualisation of the contact angle of the drop will then give a good indica-

tion of the relative values of the different impedances and an estimate of the

number of charges present in the drop.

In the following we will study the two requirements to have oscillations:

first, a simple geometrical condition and then and electrical condition that

arises from the capillary break-up .

3.3 Geometrical conditions for the oscillations

When a drop smaller than the capillary length is deposited on the solid

surface its shape is a spherical cap since gravity is negligible; the height of

the apex of the drop h(U0 = 0) corresponds to the height of a drop of Young’s

contact angle on a planar substrate (see Appendix C.2) since no voltage is

applied between the drop and the substrate.

A platinum electrode of radius re is positioned at the top of the drop at
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a distance d of the substrate surface. In order to have contact between

the drop and the electrode d has to be smaller than h(U0 = 0). When a

voltage U0 is applied the drop spreads, its contact angle following Lippman’s

equation. The associated height h(U0) of a sessile drop with Lippmann’s

contact angle is computed from the volume V of the drop and its contact

angle always assuming a spherical cap shape of the drop. When the distance

from the electrode to the substrate is larger than h(U0), a liquid capillary

neck is formed between the electrode and the drop. When the distance d is

increased at fixed voltage the capillary neck becomes unstable and breaks at

a distance dmax(U0). This distance dmax(U0) is determined experimentally

by quasi statically removing the electrode from the drop. After the break

up, the discharged drop relaxes back to its equilibrium shape, a spherical cap

with Young’s contact angle.

It is clear that in the case where dmax(U0) is smaller than the height of

the drop at zero voltage at some point of its relaxation to equilibrium the

drop will touch the electrode, charge and spread again. The apparition of an

oscillating regime in this system is thus expected from a simple geometrical

point of view when

dmax(U0) < d < h(U0 = 0) (3.1)

Such a situation is presented as an illustration in Fig. 3.6 for a 1 µL drop of

glycerol water and salt under a voltage of 72 Vrms at 10 kHz. The diameter

of the electrode (250 µm) gives the scale. The drop oscillates at about 20

Hz between the connected state (spreading at Lippmann’s angle) and the

disconnected state (receding at Young’s angle). The shape of the drop in the

oscillating regime depends on the hydrodynamic and electrical parameters of

the system and will be discussed later.

3.3.1 Phase diagram

For a given drop the parameters of the experiments are the distance d between

the electrode and the substrate and the applied voltage. By varying these two

parameters a phase diagram is plotted. A drop of diameter V ≈ 3µL of the

solution is deposited on a silicon substrate coated with an OTS monolayer.

The electrode is immersed in the drop and slowly pulled-up. The distance

dmax for which the connection between the electrode and the drop is broken

is measured. The voltage is increased to obtain the curve dmax(U0). The
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Figure 3.6: Oscillations of a drop at 70 V rms and 10 kHz; the frequency of

the oscillations is about 20 Hz. (2000 fps)

oscillations are expected for voltages U0 and distances such that dmax(U0) <

d < h(U0 = 0) where h(U0 = 0) is the height of the drop at zero voltage. In

Fig. 3.7 the variation of dmax(U) is displayed as well as the height of the drop

at zero voltage. The oscillations are expected in the right corner defined by

the curves dmax(U0) and h(U0 = 0). The stars represent the points where

the oscillations have been experimentally observed. Oscillations have not
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Figure 3.7: Phase diagram of the system. The voltage is normalised by

U0 = 50V and the distances by the volume of the drop to the third. The

model predicts an oscillating regime above the full line (d > dmax) and below

the dashed line (d < h(U = 0)). The triangles represent the point where

oscillations have been observed.

been observed anywhere else. The graph shows distinctly an oscillating area

above a threshold voltage UT . This voltage is the intersection of the curve

dmax with the curve d = h(U0) as expected from the simple model. In the

following we will present two models for the determination of the threshold

voltage, a simple model and a more general one based on the stability of the

unduloids as described in Chapter 2.

3.3.2 Modeling the threshold

In order to determine the threshold voltage it is necessary to determine the

variation of dmax with the applied voltage and to solve the equation

dmax(U0) = h(U0 = 0) (3.2)

As it can be seen in Fig. 3.7, a model curve of dmax(U0) has been calculated

and added to the graph. It has been obtained by using the argument that
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the capillary neck breaks when its height is of the order of its width. The

height of the capillary neck at the break-up is estimated as dmax(U0)−h(U0)

with h(U0) the height of the sessile drop at Lippmann’s contact angle for the

voltage U0 obtained from the experimental electrowetting curve. The width

of the capillary neck is of the order of the electrode diameter which means

that dmax(U0) = h(U0) + kre where k is a parameter that has to be adjusted

to fit the experimental curve and re is the radius of the electrode. In the

present case the experimental curve and the modelled curve with k = 5 are

in a good agreement. Indeed two simple argument explain that this threshold

voltage has to be strictly positive:

• the height of the drop is a decreasing function of the applied voltage:

h(U = 0)−h(U0) > 0. Since one has to equal h(U0 = 0)−h(U0) with a

strictly positive value (k× re > 0) then U0 at the threshold is positive.

• what would mean a 0 V threshold ? Simply that an energetically insu-

lated drop / substrate system would produce a motion without external

driving which is energetically not consistent

The oscillations are thus promoted by the external force and especially by

the fact that this external driving force changes during the cycle between the

connected state and the disconnected state.

3.3.3 Consequences: Size effect and downscaling

This model also explains the variations of the threshold with the diameter of

the electrode: UT is increasing when the electrode diameter. The threshold

voltage depends only on the geometrical parameters of the drop (θY and V )

and on the electrode diameter re: fixing the contact angle of the system, if

the ratio of the drop size to the electrode diameter is kept constant and as

long as gravity is negligible compared to surface tension UT is constant. Since

h(U = 0)− h(U0) =

(
3V

π

)1/3

× (f(θ)− f(θY ))

where f is a function of θ written in the Appendix C.2 whose expression is

not required here, it is obvious that solving h(U0 = 0) − h(U0) = k × re to

determine the threshold only involves θY and V 1/3/re. The diameter of the

electrode becomes then just the length scale of the system. The variations
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of the threshold voltage have been measured as a function of the drop size

for two different electrode radii in order to test this scaling at a fixed contact

angle. The results are displayed in Fig. 3.8. The drop size V 1/3 has been

Figure 3.8: Variation of the threshold voltage UT as a function of the aspect

ratio of the size of the electrode and the size of the drop. The full line

correspond to the determination of the threshold voltage from the static

model with a fit parameter equal to 5 (see Fig. 3.7)

scaled by the electrode radius re. All the data points are collapsing on a single

curve which confirms that the relevant scale is the electrode radius. The

model curve of the dependence of UT with drop size is obtained by solving

for U0 the equation h(U0) − h(U0 = 0) = kre with k ≈ 5. The tendency of

the threshold voltage to increase with the electrode size (or decrease with

the drop volume) is consistent with the expectations. The model curve is

found to be in good agreement with experimental data, especially in the

case of the smallest electrode for which the volume of the neck keeps being

negligible compared to drop volume. The curve obtained from the model

is not in agreement with the experimental data at small volumes. In this

regime of parameters, the volume of the neck is not negligible compared to
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drop volume which is an implicit condition in the model when we derive that

dmax = h(U0) + k × re. This will be improved in the following using the

model based on the unduloids.

3.3.4 Contact angle saturation

Since θ saturates at a non zero value due to the saturation of the contact

angle, h also saturates. A maximal value of electrode diameter is found for

which the oscillations can occur: this value depends on the maximal variation

of the contact angle when the voltage is applied and explains the divergence

of the model curve at small V 1/3/re. If one would plot θT the threshold

contact angle as a function of V 1/3/re one would observe no divergence but

simply an experimental cut-off at small θT .

However, the model based on stability of the capillary neck is not valid for

small values of V 1/3/re. The decrease of drop size means that the drop can not

be considered as a spherical cap with a neck any more but the neck and the

drop are linked in a single shape. The whole drop shape must be calculated

using the argument that any axi-symmetric constant mean curvature surface

is a Delaunay surface [73] as studied in the Chapter 2. This full capillary

model is now presented.

3.3.5 Application of the unduloids model.

The drop shape is an unduloid for which the stability limit with increas-

ing distances has to be calculated. Taking the volume from the experimen-

tal conditions the variations of dmax have been calculated according to the

method described in Chap. 2. The contact angles have been converted from

the applied voltage using the electrowetting curve. In those conditions, the

comparison of the experimental data and the modelled data are displayed in

Fig. 3.9. This model is consistent with the approximate model: indeed in

the regime we are working in the curve representing dmax is parallel to the

height of the drop. This confirms that one can write dmax = h(UO) + k× re.

The parameter k that has been taken equal to 5 by a fit is recovered in the

model. The advantage of the unduloid model is double:

1. there is no fit parameter;

2. there is no restrictions on drop volume.
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Figure 3.9: Use of the unduloid model to predict dmax. The experimental

points are the same as in Fig. 3.7. They are compared with dmax obtained

for a rescaled volume of 29 × 103 given by the experiments.

The drawback is that the mathematical derivation of the model is more com-

plicated. Using the unduloid model the size effect has been studied and com-

pares quite well with the experimental observations. The model based on the

unduloid has also been extended here to determine which Lippmann angle θ

has to be reached in order to have the oscillations for different drop volumes

as a function of Young’s contact angle. The drop volumes are rescaled by

the the cube of the electrode radius r3
e . For each drop volume the variation

of dmax(θ) was calculated in a range of θ accessible by the electrowetting ex-

periments (45-180 degrees). Then writing hs(θY ) as the height of a spherical

cap at Young’s contact angle, Eq. 3.2

dmax(θ) = hs(θY ) (3.3)

has been solved. The results are displayed in Fig. 3.11 and can be used for the

determination of the oscillating area in the presented geometry as a function
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Figure 3.10: Extension of the unduloid model to determine the effect of the

size of the drop on the threshold voltage. The experimental points are the

same as in Fig. 3.8

of Young’s contact angle and the volume of the drop. Some features can be

discussed:

1. When the volume is increased, the threshold voltage gets closer to

Young’s contact angle. This is the same result as the one obtained

with the simple model: the threshold voltage decreases with decreasing

electrode diameter. The smaller the electrode is the easier the oscilla-

tions are obtained.

2. For a given volume, the shift of contact angle required to have oscil-

lations is increasing when Young’s contact angle is going close to 180.

This can be seen as a simple geometrical effect due to the small varia-

tions of hs close to 180 degrees. In the rest of the range of θ the relation

is almost constant which is the result of the fact that hs is almost linear

in a wide range of θ, so is dmax.
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Figure 3.11: Full diagram for the predition of the threshold contact angle as

a function of drop volume and Young’s contact angle. In abscissa Young’s

contact angle, in ordinate the contact angle that has to be reached to have

oscillations. The red point corresponds to the case of Fig. 3.7

For drops with diameter smaller than the electrode diameter oscillations have

also been observed. However in this case the whole drop must be considered

as a single capillary neck pinned at the edge of the tip and the whole os-

cillating process is different because the small drop left at the tip after the

break-up plays also a role in the apparition of the oscillations. This geometry

reminds the geometry used in the two plates geometry [47]. The oscillating

regime should in this case be determined by argument close to those given

in this two plates case. In the rest of the paper we will not consider these

oscillations.
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3.4 Influence of the pinchoff on the oscilla-

tions

In the oscillations observed by Klingner et al. [47] one of the ingredient of

the oscillations was the presence of an electric field which was helping the

relaxation. In our case, in the previous experiments the influence of the

electric field on the oscillations is not observable in the experiments and

thus not part of the model. However, it has been observed that the electrical

properties of the system have an influence of the oscillations; in the case where

detachment occurs, different situations have been observed, stable oscillations

or erratic behaviour. This influence of the electrical effect are now studied,

and in particular at the critical moment of the pinch-off.

3.4.1 Experiments

The experiments were performed as follows. Solutions were prepared with

various proportions of glycerol, water and sodium chloride in order to vary

the viscosity and the conductivity of the drop. The voltage is applied between

a platinum cylindrical electrode and the substrate at different frequencies in

the range 1 - 20 kHz, 70 - 85 V (rms). In those conditions, when the electrode

is placed at the top of a microlitre drop the spreading due to electrowetting

leads to the detachment of the drop from the electrode. The drop is ob-

served via a standard or high speed camera. The current flowing through the

electrical circuit is measured via amplification of the voltage at the bound-

ary of a resistance in series with the drop. This method gives an electrical

characterisation of the state of the drop: when the drop is connected to the

electrode the current is given by the electrical properties of the drop and the

insulating layer; when the drop is disconnected, the current is almost zero.

Upon detachment from the electrode two limiting phenomena have been ob-

served. Either the drop bounces back to the electrode with a contact angle

close to Young’s contact angle (regime I) or the drop keeps the Lippmann

contact angle and relaxes slowly to the electrode, the contact angle changing

slowly (regime II). In the first case the relaxation to the electrode leads to an

oscillatory regime since the drop touches the electrode again, spreads again

and detaches again. In the second case, the behaviour is less predictable:

either the drop relaxes to the electrode with a large time-scale or after a
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short time the drop moves away from the field of view and never touches

the electrode again. The two different regimes have been observed for the

same drop, the same voltage but different frequencies of the voltage source

(1 kHz and 10 kHz), using a high speed camera at 2000 frames per second.

Snapshots of the break-up are displayed in Fig. 4.10(a).

At 1 kHz, after the break-up the drop keeps a small contact angle which in-

Figure 3.12: Pinch-off at 1 kHz (2000 fps movie). The oscillations are not

present: the drop contact angle after the breakup is still close to Lippmann’s

contact angle. For comparison, the right sequence gives the pinch-off at 10

kHz showing a contact angle close to Young’s contact angle after the pinch-off

(See also Fig. 3.6). In both cases the electrode diameter is 250 µm

creases slowly while the drop moves away out of the field of view. At 10 kHz

(see snaphshots in Fig. 3.6, page 57) stable oscillations have been observed.

A noticeable difference in the variation of the contact angles is observed.

The contact angle have been measured and are displayed in Fig. 3.13. It

should however first be noticed that these contact angles are dynamics con-
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tact angles; their value depends strongly on the speed of the contact line

and on the scale at which they are measured. They give however a good

indication of the state of the drop in terms of electrical charges but should

not be taken as absolute and accurate values. At 10 kHz the contact angle

Figure 3.13: Measurement of the contact angle of the drop close to the pinch-

off. At 10 kHz, the contact angle changes from Lippmann’s contact angle to

Young’s and the oscillations occur. At 1 kHz, the contact angle is always

close to Lippmann’s contact angle: No oscillations. The inset are the mea-

surements of the current in both situations showing stable oscillations (10

kHz) or no oscillations (1 kHz)

changes suddenly even before the break-up while in the case of the 1 kHz

signal the contact angle is roughly Lippmann’s angle after the break-up. The

difference in contact angles is the result of remaining charges in the drop

after the capillary break-up, the value of the contact angle after the break-up

being the signature of the charges. In the regime I, the contact angle shows

that no charges are kept inside the drop while in the regime II a significant

number of charges is kept in the drop. These charges can leave the drop only
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via the insulating layer. The time-scale of the relaxation will be driven by

the electrical defects in the insulating layer and is a function of the number

of charges. The charged drop is sensitive to the heterogeneous electric field

in the environment and to the presence of trapped charges or holes in the

insulating layer [77] which can produce a lateral driving force on the drop.

The value of the contact angle after the breakup is not exactly the same as

before. One argument that can be invoqued to explain this effect is that the

contact line is advancing before the breakup and receding after. Since the

contact angle is increasing after the breakup (and not decreasing) the change

is more likely an electrical consequence of a small loss of charges during the

breakup.

At 10 kHz, the contact angle varies following a master curve: at d =1.0 or

1.2 mm the relaxation of the contact angle is the same. The only difference is

that the drop touches the electrode earlier when the distance is smaller: the

contact angle decreases again earlier for d =1.0 mm (down triangles compared

to up triangles). On the other hand when the distance is smaller the contact

line has more time to spread; the contact angle even reaches a plateau close

to the real Lippmann angle (see the down triangles just before the pinch-off)

while the detachment occurs when the drop is still spreading significantly for

a larger distance (up triangles). These two competing effect have of course

an influence on the frequency of the oscillations.

The limit between regime I and regime II has been studied experimentally

and shows a dependence on the electrical parameters of the system. For a

given drop (conductivity and viscosity constant) the boundary depends on

the frequency of the voltage source: at “high” frequency the drop oscillates

regularly (regime I) and the oscillations are not present any more below a

threshold frequency (regime II). For given frequency and viscosity the oscil-

lations stop when the conductivity of the solution increases. Finally, for a

given conductivity and frequency the regime I is obtained at“high”viscosities

while regime II is obtained at “low” viscosity. These results are summarized

in Fig. 3.14 which shows the evolution of the threshold frequency for different

viscosities and conductivities.

In order to understand the influence of the electrical parameters we stud-

ied the variation of the current flowing through the circuit as a function of

the electrical and hydrodynamical parameters of the set-up, with a special
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Figure 3.14: Experimental limits of the oscillating regime: influence of the

electrical parameters. The drops considered here are 1 µL drops with an

electrode of 250 µm diameter. The dashed lines are guides for the eye.

attention to the snap-off. The electrical analysis of the current is coupled

to the determination of the geometrical parameters of the drop during the

oscillations via the measurement of the drop radius on the surface and of

the minimal diameter of the capillary neck using a high speed camera. As

expected when the oscillations are stable, the current is alternating from a

non-zero value when the drop and the electrode are in contact to a zero value

in the disconnected state. The current has also a shape closely linked to

the evolution of the geometrical parameters as displayed in Fig. 3.15. In a

first regime, after the electrical connection is re-established, the current is

increasing due to the increase of the drop surface πr2
s . Then in the latest

stage of the oscillations, the capillary neck diameter goes to zero as well as

the current. A close look at the current during the breakup shows the in-

fluence of the frequency ω on the decrease of the current: when ω decreases

the time-scale of the decrease of the current is ≈ 4 times larger at 20 kHz

(≈ 2 ms) than at 5 kHz (≈ 0.5 ms) as displayed in Fig. 3.16. The way the

current drops to zero depends then on one hand on the electrical impedances

which involve the drop conductivity, the frequency of the voltage source, and
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Figure 3.15: Relationship between geometrical parameters and intensity mea-

surement (a) radius of the drop on the solid surface (linked to the capacitive

impedance), (b) Minimal radius of the capillary neck (linked to the electrical

resistance). (c) Variation of the electrical current through the circuit between

zero (disconnected state) to a non-zero value. The current first increases fol-

lowing the increase of rs and decreases at the end following the decrease of

rmin

the insulating layer parameters and on the other hand on the time-variation

of these quantities determined by the hydrodynamics of spreading and the

break-up.

3.4.2 Electrical model

In order to understand the interplay of these parameters, an electrical model

has been developed with the minimum of fundamental ingredients:

• A capacitance C modelling the liquid / solid interface

• A resistance Rn diverging with the neck diameter.
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Figure 3.16: Variation of the electrical current close to the breakup when

the frequency changes. The typical time of decrease of the current is shorter

when the frequency is smaller. (η =7mPas, σ =1.8 mS/cm).

For simplicity the capacitance is taken constant which is a fair approximation

according to the results of Fig. 3.15. The resistance divergence is due to

the decrease of rmin. The divergence of the resistance already explains the

results of Fig. 3.16. Indeed, in terms of electrical impedances, the resistance

dominates over the capacitance when:

rmin(t) � ωε0εrr
2
s

Tσ
(3.4)

assuming a cylindrical neck. Since rmin(t) diverges one can always find a

time t∗ above which Eq. 3.4 holds. Depending on the value of ωε0εrr
2
s/(Tσ),

t∗ is more or less close to the time of the breakup. In particular when the

frequency of the voltage source increases, t∗ decreases.

According to previous work on capillary breakup [64, 78], the late stage
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of capillary breakup displays power law variation of the neck radius as a

function of time. Depending on the physical balance of stress on the neck,

different exponent are expected. Assuming that the resistance of the neck is

linked to its shape the power law variations of the neck should reflect on the

resistance variations: the divergence of the resistance at the break-up (t = 0)

is modelled using:

Rn(t) = R0 ×
(

t

t0

)−µ

, µ > 0 (3.5)

R0 represents the typical resistance of the neck inversely proportional to the

conductivity R0 ∝ 1/σ and t0 is a typical time coming from the physics of

the break-up. µ is the exponent of resistance divergence which is linked to

the exponent of capillary breakup and the shape of the neck. The driving

voltage is written as U0 sin(2πft + φ) where φ is an arbitrary phase and the

equation followed by the electrical charge q in the capacitance is simply given

by the differential equation:

Rn(t)× q′(t) +
q

C
= UO × sin (2πft + φ) (3.6)

Using q0 = CU0, τ = 1/(2πf) the equation is written using the dimensionless

variables Q = q/q0, T = t/τ :

χ1+µ × T−µ ×Q′ + Q = sin (T + φ) (3.7)

with a dimensionless number:

χ = 2πf × (R0 C tµ0)1/(µ+1)

This equation is solved numerically using a Mathematica routine. The inter-

esting value is the charge Q at the breakup. This charge depends of course

on the phase φ but we will focus on its maximal value Qmax for the different

phases. The charge kept in the drop at the breakup for a given phase φ will

thus be 0 ≤ |Q| ≤ Qmax. The charge at the break-up is distributed between

0 and Qmax; in these conditions, because the phase is a priori randomly

distributed the charge will be random leading to erratic behaviour after the

break-up. It is clear that if Qmax � 1 the drop charge is almost zero after

the break-up. The results of the calculation are given in Fig. 3.17 showing

that the maximal charge is significant for χ < 1 and negligible for χ > 1

The variations of Qmax do not depend strongly on the choice of the expo-
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Figure 3.17: Calculation of the maximal charge in the drop at the breakup

according to Eq. 3.7 for different exponent of resistance divergence µ.

nent µ at least in the range where this parameter is expected (0.5 - 2). The

only important ingredient of the model is thus the presence of a divergence,

regardless to the exact way the divergence takes place.

3.4.3 Comparison with experiments

In addition to the charge, the model also provides the variation of the cur-

rent by a simple derivation of the charge. In order to determine the value

of the parameter χ the experimental measurements of the current are fitted

using χ as a fit parameter for different exponent µ between 0.5 and 2. The

quality of the fit usually does not depend strongly on the value of the ex-

ponent µ and the experiments are well fitted by the model as displayed in

Fig. 3.18. In most of the cases, for each µ ∈ [1.0, 1.3] a corresponding χ can

be found that provides an excellent fit of the experimental data as displayed

in Fig. 3.19 for the same electrical measurement at 15 kHz. The decrease
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Figure 3.18: Comparison of the experimental data and the fit obtained from

the model using µ=1 showing that the fit and the experimental data are

undistinguishable.

to zero is well described by the resolution of the equation: the fit and the

experimental data are almost indistinguishable. The parameter χ does not

depend significantly on the choice of the power law exponent µ. A relatively

large range of exponent can be used to fit the data; the model is thus not very

sensitive to the divergence as expected from the resolution of the equations

in the previous section. However, a relation independent on µ exists between

χ and the frequency f of the voltage source: it follows a linear scaling with

the frequency of the voltage source all the other parameters being constant:

χ ∝ f

The values of χ obtained from fits of experimental current obtained for differ-

ent mixtures have been plotted as a function of the applied frequency leading

to Fig. 3.20 including the error bars obtained for the different exponents. The

expected linear behaviour as a function of the frequency of the voltage source
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Figure 3.19: Two different fits on the same electrical signal. Different val-

ues of the expoent µ give different values of χ giving the error bars in the

determination of χ. f = 15 kHz.

is obtained for all the mixtures used. When the conductivity σ of the drop

increases, the parameter R0 ∝ 1/σ decreases which as a consequence de-

creases the slope as observed. Concerning the effect of viscosity, increasing

the viscosity increasing t0 which as a consequence increases the slope. Finally

the oscillations stop close to the horizontal line χ ≈ 1 which correspond to

the point where the charges kept in the drop becomes important. Our model

captures thus correctly the physics of the breakup: the most important in-

gredient is the divergence of the resistance more than the exact value of the

exponent. An accurate determination of the exponent of the resistance is not

possible experimentally. The method used here give a range of µ= 1.0 - 1.3

which can be compared to the expectations coming from the hydrodynamics

of the pinch-off.
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Figure 3.20: Values of χ obtained for different frequencies on several solu-

tions. For a fixed solution the linear behavior as a function of the applied

frequency is correctly observed within the accuracy of the experiments (* :

η = 80 mPas, × : η = 7 mPas, from top to bottom σ ∈ [1.0, 2.3] mS/cm and

σ ∈ [0.8, 1.8, 7.1] mS/cm. Inset: Qmax as a function of χ.

3.4.4 Power law exponent at the pinchoff

Hydrodynamics exponents

As discussed above, the electrical measurements did not allow for an exact

determination of µ. In order determine a correlation between the divergence

of the resistance and pinchoff dynamics we studied with a high-speed camera

the break-up process of different liquids at different frequencies of the voltage

source. The spatial resolution on the images was 64×256 pixels at 16000 fps

which was not enough to resolve fully the latest stage of the break-up. The

minimal radius of the capillary neck has been measured on the images. We

studied the influence of a change in viscosity at 10 kHz and approximately

constant conductivity and the influence of frequency at constant viscosity. In
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order to have a high time resolution this latter case was studied on a viscous

drop. Moreover it is important to notice that we are not interested in the

exponent of the dynamics at the latest stage of the capillary breakup but at

a time-scale of order 1/f (≈ 0.05 to 1 ms). The capillary breakup in air or

in inviscid fluids was studied earlier by several authors [64, 79, 80, 81]. They

found power law behaviours for the minimal radius of the neck as a function

of time rmin ∝ tν ; the regime of breakup (and the exponent ν) is determined

by the dimensionles Oh number equal to η/
√

ρrminσ. Various exponents ν

for the breakup are found: the neck radius shrinks to zero in time as rmin ∝ t1

in the case of a balance between capillarity and viscous dissipation (Oh > 1

– Egger’s universal law [82]) or rmin ∝ t2/3 in the case of a balance between

capillarity and inertia (Oh < 1) [83]. Since the radius shrinks during the

breakup a wide range of Oh is obtained during the pinchoff. Usually both

regimes are observed. In the beginning of the experiment, Oh is initially

small and grows above 1 in the time of the pinchoff. The transition Oh = 1

is obtained when the minimal radius fulfils

rmin ∼
η2

ργ

Using water in air the crossover is obtained when rmin is smaller than one

nanometer. Therefore it is not observed as shown by Burton et al. [81]. For

glycerol at 100 mPas this radius is significantly increased. For breakup in

air the crossover would be close to the millimetre. However the problem we

are dealing with here is the breakup in a surrounding fluid which has also

been studied by different authors [84, 85, 86]. In this case the behaviour

depends on the different viscosities and in particular on the ratio of the vis-

cosities of the two fluids [84]. In the present experiments this ratio goes from

2/5 (pure water in oil) to 80/5 (Glycerol-water 80:20 in oil). In the Stokes

regime a law in rmin ∝ t1 is recovered with a universal bi-conical shape of

the neck [84, 86]. It can be shown that inertia is then always negligible [78].

The system exhibits a transition from the viscous thread to the Stokes flow

or from the potential flow through the inertial-viscous thread to the Stokes

flow. In those conditions the exponent is expected to crossover from 2/3 to

1 close to the experimental observations in the latest stage of the breakup

(see inset of Fig. 3.21). At low viscosity the fluid behaves as inviscid on the

time scale we are looking; for the viscous case the viscous thread regime is

obtained. This is confirmed by numerical simulations (Volume of Fluid, see
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below in Fig 3.21) which gives the correct exponents for simulation parame-

ters comparable to the one used in the experiments.

“Electrohydrodynamic” exponent

It is clear that the exponent we are studying is not directly the exponent of

the hydrodynamical breakup ν. The exponent of the electrical resistance µ

depends on ν and on the shape of the neck:

Rn ≈
1

πσre

∫
dz

r(z)2
(3.8)

For various shapes different exponents are expected:

1. for a cylindrical neck, the relationship between the exponent of the

hydrodynamics ν is simply linked to the exponent of the resistance

divergence µ by: µ = 2ν.

2. for a conical neck, the relationship becomes µ = ν [81, 87].

3. for the universal shape of Egger’s solution the exponent of the resistance

would follow µ = 3/2.

Moreover the hydrodynamics crossover will be reflected in crossover for the

µ. We used the experimental data to find the contour r(z) where z is the

height and r the neck radius. Then we calculated the resistance of the neck

via:

Rn ≈
1

πσre

∫
r<re

dz

r(z)2
(3.9)

both for the experimental data in the viscous and inertial case and for the

simulations in the viscous case. The results are displayed in Fig. 3.21. The

inset displays the variations of the minimal radius of the capillary neck which

is close to the expectations: a power law of 2/3 for the inviscid fluid and 1

for the viscous. The resistance calculation shows a nice agreement between

the numerical results and the experiments. The resistance does not vary

universally as a simple power law but the slope of the curves is between 1

and 1.5, consistent with the exponents obtained from the fit of the electrical

current. The measurement of the divergence of the electrical resistance of

the capillary neck gives then the same results with the two methods, with

roughly the same accuracy.
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Figure 3.21: Divergence of the resistance of the capillary neck. Experiments

and numerical simulations for two viscosities. The errors bars come from

the lack of accuracy in the determination of the radius of the neck when its

sizes reaches the pixel size of the camera. Inset: the power law exponent for

the decay of the minimal radius are recovered for the experiments and the

numerical simulations.

3.4.5 Influence of electric field on the pinch-off.

The influence of the frequency of the voltage source on the break-up has been

studied briefly. The idea was to determine if the voltage frequency ω had

an influence on the dynamics of the breakup itself. These questions have

been studied on the same drop changing simply the frequency of the voltage

source in order to be in the oscillating regime at 10 kHz and out of this regime

at 1 kHz. The pictures of the breakup were recorded at 16000 fps and are

displayed in Fig. 3.22. The pictures show a huge difference between the two

situations. Indeed in the 1 kHz signal a long thread is produce which is not

the case at 10 kHz. The difference is underlined when the minimal radius of
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Figure 3.22: Pinchoff at 1 kHz (top snapshots), and at 10 kHz (bottom

snapshots). The time between two successive pictures is 62 ms. The log-

log graph represents the minimal neck diameter as a function of time. The

presence of an electric field parallel to the axis of the neck has obviously an

influence on the rupture of the neck.

the thread is plotted as a function of time in the two cases. There is clearly a

difference in the two situations. The capillary neck seem to be stabilized for

a longer time at 1 kHz compared to the situation at 10 kHz. There is thus a

deviation to the classical capillary breakup in the presence of an electric field.

What could be the reason for the difference ? – The difference

between 1 and 10 kHz is the presence of electrical charges in the drop after the

breakup at 1 kHz. As we have previously seen at 1 kHz, the charges are frozen

in the drop by the rapid change in the neck diameter. In the electrowetting

system, there is no electrochemistry: the total number of charges present

in the liquid volume is always zero. But in the presence of an electric field

the charges are separated, the positive charges are for instance at the solid
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surface and the negative charges close to the tip of the electrode. We have

seen previously that at 10 kHz, 1 ms before the breakup the drop is discharged

(more exactly the capacity is discharged) which means that no charges are

left neither in the drop deposited on the surface nor in the droplet hanging at

the tip of the electrode. No charges on each side of the capillary neck means

that the capillary neck has been broken in the absence of electric field. On the

other at 1 kHz some charges have been frozen in the drop and the opposite

charges have been frozen in the drop hanging at the tip of the electrode. The

breakup has thus involved electrical charges which could not flow through the

neck (the value of voltage period is larger than the time-scale of rupture).

There is thus an electric field along the neck in this case. Electric field have

the property to stabilize liquid structures (see Mugele [88]). In Fig. 3.23) we

present an example of the well-known instability of the contact line1 which

leads to the production of small drops at the periphery of the mother drop

in which the voltage is applied. The necks bind the mother drop to satellites

and satellites in cascade: the structures are stable for long times, at least

much longer than time-scales expected from a pure capillary point of view.

It is also known that a longitudinal electric field can stabilize a liquid jet [90]

and also modify the way a drops falls from a tap [91]. This effect could then

explain the long thread observed in our experiments at 1 kHz where electric

fields are presumably becoming important compared to capillary forces. But

it is also known that the stability of liquid cylinders is strongly influenced

by electric fields [92] and depending on the electrical properties of the fluids

(perfect dielectric / non perfect dielectric [93], charges [94]), the perturbation

considered (axi-symmetric / non-axi-symmetric, wavelength of the unstable

mode [95]) the stability limits can differ. The influence of the resistivity

of the liquids used and the frequencies of the AC fields applied has also

shown in some other set-up different regimes in the droplet breakup [96, 97].

All these elements may then complicate the analysis of the breakup and

our simple electrical model and would make a promising subject for further

investigations. For instance the electric field should influence in some regime

of parameters via the surface stress the rupture exponents. It should be

1This instability has been observed in many experimental setups and its origin is still
the subject of investigations. Coulomb explosion due to an excess of charge at the contact
line is likely driving the mechanism. This effect could be linked to the instability observed
in electrospraying of a rotating drop which shows similar structures [89]
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Figure 3.23: The instability of the contact line: the electric field is responsible

for the stabilization of the liquid micostructure on timescales much larger

than in a pure capillary frame.

noticed that in the cases we have presented here, the influence of the electric

field on the breakup should be negligible since the exponents of the breakup

are the one expected for the capillary rupture of free-surface flows.

3.4.6 Conclusions

During the breakup of the capillary neck under electrowetting conditions,

the interplay of electrical and hydrodynamical effect determines the final

charge of a drop. This has consequences on the oscillations expected from

a geometric viewpoint: stable oscillations require a switch from Lippmann’

angle to Young’s angle at the breakup. When charges are kept in the drop

the contact angle keeps its Lippmann’s value: relaxation at Young’s angle

cannot occur and the oscillations are not stable.

We observed that two regimes occur depending on the dimensionless χ; the

decay of the electrical current during the breakup is sharp at χ < 1 and

continuous at χ > 1. The experimental observations of the electrical current

show the importance of the divergence of the electrical resistance during

the breakup. Measuring the electrical current it has been shown that the

electrical resistance of the capillary neck diverges: the divergence is consistent
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with a power law scaling with a typical exponent in the range 1 to 1.5.

This exponent is on the other hand consistent with the evaluation of the

resistance of the capillary neck determined from the shape of the drop during

the breakup and with expectations coming from the hydrodynamic analysis

of capillary breakup.

The different regimes do not depend critically on the value of the power law

exponent of the resistance. The electrical model captures thus correctly the

physics of the interplay of electrical and hydrodynamic effects at the breakup.

Finally it has also been observed that the frequency of the electric field has

an influence on the capillary breakup. This effect does not influence our

analysis and would be an interesting subject of future investigation.

3.5 Hydrodynamics during stable oscillations

The oscillating area is well defined by the limits given by the static model

however in the oscillating regime the oscillations do not look everywhere the

same.

3.5.1 Intermittency: Experiments

The study of the time sequences corresponding to the stars of Fig. 3.7 has

been performed. Two typical time sequences are found, depending on the

position in the (U ,d) graph. Close to the boundaries of the oscillating regime

and especially in the vicinity of the threshold voltage, intermittency is ob-

served as displayed on Fig. 3.24. The oscillations are bursted: for a certain

time the oscillations are well defined and stop for a while. In conditions

near the upper limit the drop switches between an oscillating state and a

temporary disconnected state while near the lower limit the drop switches

between oscillating state and temporary connected state. Far away from

these boundaries, the sequence is stable and the frequency of the oscillations

is well defined.

3.5.2 Modeling the intermittency

The intermittency is probably the result of the discharge at the pinchoff. As

we saw earlier, in any range of electrical parameters, some charges (more
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Figure 3.24: Time sequence of drop connection to the electrode in the oscil-

lating regime: (Top) Stable oscillations at a well defined frequency, (Bottom)

Intermittent oscillations close to the boundaries of the oscillating regime. For

more details on the intermitency, see [98]

or less depending on the electrical parameter χ) are left in drop. Let us

assume a viscous drop whose shape during the relaxation after the breakup

is close to a spherical cap. Its contact angle is determined by its number of

charges Q < Qmax. If Q = 0, it is Young’s contact angle. If Q = Qmax it

is Lippmann’s contact angle2. The drop will thus relax to a spherical cap of

height h(θ(Q)). The minimum h is obtained for a charge Qmax:

h(Qmax) < h < h(Q = O)

Let us assume now that we are in the regime of stable oscillations Qmax = ε

where ε is a small parameter. Since ε is small, θ(Qmax) = θ(Q = 0) − o(ε2)

and h(Qmax) = h(Q = 0)− o(ε2). If the distance d is smaller than h(Qmax),

then for any phase of the voltage source we have d < h(Q): the drop will

always touch the electrode during the relaxation. Moreover the relaxation

is driven by the wettability since the contact angle is Young’s contact angle

2The link between Lippmann equation at fixed voltage or at fixed charge is simply
given by the relation q = CU
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(neglecting the small correction): the number of charges will not change the

time-scale of the relaxation and the oscillations are stable.

On the other hand, for the case h(Qmax) < d < h(Q = O) the equilibrium

height h(Q) of the receding drop can be smaller or larger than the distance

d. If it is larger, the drop will touch the electrode, if not it will not. Taking

into account the leakage current through the insulating layer, the drop will

discharge slowly and recede to the tip with a time-scale depending on the

leakage current and the initial charge, source of the intermittency.

For any value of Qmax intermittency appears within a certain range of

d. This size of this regime is given by Qmax. In those conditions, we expect

erratic oscillations when the distance is larger than h(Qmax) which means

close to the horizontal line d = h(U0 = 0). The extension of the erratic

area depends on the value of Qmax and thus on the value of the electrical

parameters: the larger Qmax the more intermittency will be observed.

Consequence – When Qmax ≈ 1 the intermittent area is extended all

over the oscillating regime: it is the discharge through the insulating layer

which drives the relaxation. The electrical model presented above has thus

the advantage to explain also the intermittency observed in the experiments

at large χ without having to introduce any new assumption. Intermittency

is thus a consequence of the incomplete electrical discharge through the cap-

illary neck during the capillary breakup.

Note – Close to the transition non-linear dynamics phenomena are also

expected. The analysis of the intermittency in terms of non-linear dynam-

ics has not been performed: here we restricted ourselves to the macroscopic

description of the intermittency. A non-linear dynamic analysis for the in-

termittency could be an interesting subject of future investigations.

3.5.3 Influence of viscosity

Phase diagram

The evolution of the frequency in the oscillating area is displayed in Fig. 3.25.

The frequency increases with voltage as a result of an increase of driving force.
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Figure 3.25: Variation of the frequency with the parameters d and U0. The

frequency has been measured on the stable oscillations displayed in Fig.3.7.

(V ≈4µL)

When the viscosity decreases, the phase diagram is modified by the effect of

inertia (see Fig. 3.26). In this case the oscillations are also observed beyond

the limits obtained by the static argument: Once initiated d can be increased

above h(θY ): stable oscillations are still observed as a result of the inertial

overshoot of the oscillating droplet: the maximal height of the drop during

the oscillations hmax is larger than h(θY ). The oscillations stop for distance

larger than hmax. When the distance is decreased the oscillation start again

when d < h(θY ). There is thus a dynamic hysteresis as the result of the

inertial overshoot. The influence of inertia is clearly observed on the high

speed movies (see Fig. 3.27 and 3.28) when the viscosity of the drop is varied.

Drop shapes during oscillations

In the viscous and in the inertial cases, the oscillating regime display three

phases. In the connected state, the drop spreads with a contact angle close to
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Figure 3.26: Variation of the frequency with the parameters d and U . The

frequency has been measured on stable oscillations using stroboscope.

the Lippmann angle. The apprarent contact angle is a dynamic contact angle

due to the speed of the contact line. In the disconnected state the contact

angle of the drop has a large value close to Young’s angle. The contact line

is now receding and the contact angle is somewhat smaller than its value at

equilibrium. The transition between connected to disconnected state involves

the breakup of a capillary neck described in the previous section.

The oscillations of two drops at the same voltage and at the same AC fre-

quency are studied using a high speed camera. The drop in the viscous case

display a shape close to a spherical cap (Fig. 3.27) and its height does not

exceed its maximal static height. The oscillation frequency is close to 20 Hz.

On the other hand for a less viscous drop, the shape is far from a spherical

cap: surface waves travel along the surface. The contact line in particular

moves faster than the body of the drop. The frequency of the oscillations is

close to 70 Hz which is much larger than is the previous case of the viscous

drop. Moreover it can be shown that the frequency is almost independent on
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Figure 3.27: Oscillations of a viscous drop η ≈ 80 mPas in a surrounding

fluid (η = 5 mPas). The drop shape is spherical (V ≈ 1µL, Oh ≈ 1). The

frequency is about 20 Hz.

the conductivity of the drop, but depends strongly on drop size: the smaller

the drops the faster they oscillate. Hence oscillations dynamics is not a func-

tion of the electrical properties but rather a function of the hydrodynamical

parameters of the drop.

Discussions

Influence of physical parameters The frequency variations obtained

here are in qualitative agreement with the expectations; we will now try to
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Figure 3.28: Oscillations of a non-viscous drop η ≈ 3 mPas in a surrounding

fluid (η = 5 mPas) in the same conditions as in Fig. 3.27. The drop is defomed

by inertia (V ≈ 1µL, Oh � 1). The frequency is close to 71 Hz.

discuss the values of the frequencies. Three physical phenomena are present

in the oscillations; capillarity, inertia and viscous dissipation for a drop of size

r0, surface tension γ, viscosity η, density ρ. The dynamics of the oscillations

is determined by the balance of these forces represented by dimensionless

numbers. The capillary number Ca compares the influence of viscosity and

capillarity:

Ca = ηv/γ (3.10)
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where v is the typical speed of the motion. To compare the effects of capil-

larity to inertia, the Weber We number is used:

We = ρv2r0/γ (3.11)

and the Reynolds number Re compares the effects of inertia and viscosity:

Re = ρvr0/η (3.12)

One of the drawback of all these numbers is that their evaluation requires

the input of a typical speed v which is in our experiments the result of the

dynamics. In order to solve this problem, one would like to make the speed

disappear using combinations of these numbers. Doing so, one can write the

speed as a function of the Weber number:

v =

√
γWe

ρr0

Reporting this speed in the capillary number, one obtain:

Ca =
η

√
γρr0

×
√

We

The number η/
√

γρr0 is the Ohnesorge number Oh, that is besides used

to determine the regime of rupture of a capillary neck as already described

above. The same number arises because the same physical ingredients are

relevant: inertia, capillarity and viscous dissipation.

Evaluation of Oh – In our two previous experiments, the Ohnesorge

number can be simply evaluated taking the drop size, surface tension and

viscosity and densities. In Fig. 3.28, Oh ≈ 0.05 while in Fig. 3.27, Oh ≈ 1

which is in agreement with the shapes observed during the oscillations. When

Oh � 1 the oscillations are the result of the balance of inertia and capillarity

only. Since the capillary term is balanced by inertia, one has

We ≈ 1

This leads to a frequency of the oscillations F obtained by taking v ≈ r0×F :

F ≈
√

γ
ρr3

0
, for Oh < 1
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The evaluation is close to 100-200 Hz which is sligthly higher than the ob-

servations but still in the correct order of magnitude. The expression of F is

the one also obtained by looking at the frequency of an inertial surface wave

of wavelength equal to the drop size (first mode). This value is independent

on the viscosity since inertia is the opposing force.

On the other hand when Oh > 1 the oscillations are the result of the balance

of capillarity and viscous dissipation. In this situation Ca ≈ 1 which leads

to:

F ≈ γ
ηr0

, for Oh > 1

In this case the frequency decreases with increasing viscosities and correspond

to the situation of viscous damping of a perturbation of a capillary surface of

wavelength equal to drop size (first mode). No experimental data correspond

to this situation but the “viscous drop” we have seen corresponds to Oh ≈ 1.

The evaluation of the frequency at Oh = 1 by viscous dissipation or inertia

gives here a value of order 100 Hz also slighlty higher than the observations

but still in the correct order of magnitude3. The Ohnesorge number seem

to underestimate slightly the viscous dissipation. However it gives a good

indication of the regime of oscillations.

Conclusions The dimensionless number which determines the shape of the

drop during the oscillations is thus the Ohnesorge number. The evaluation

of this number gives an idea on the variations of the frequency as a function

of Oh. Indeed, at small Oh the frequency does not depend on η and thus

on Oh while at large Oh the frequency changes as 1 / Oh. The crossover is

obtained at Oh = 1. This is summarized in Fig. 3.29.

3.5.4 Numerical simulations

In order to study the previous arguments in more details, some numerical

simulations have been performed for different values of the parameters. We

used a commercial numerical code CFD-ACE which runs in the Volume of

Fluid (VOF) package.

3In other systems (impact of drop) the crossover regime has been obtained experimen-
tally close to 0.1 [99] which is close to our experimental results where inertia is vanishes
at Oh = 1
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Figure 3.29: Expectations of the frequency variations according to the vari-

ation of the Oh number. A power law F ∝ Oh−1 is expected for Oh > 1.

F0 = γ/ηr0 =
√

γ/ρr3
0

Conditions of the simulations

The system is represented by a box of roughly 75 × 75 cells in an axi-

symmetric configuration (see Fig. 3.30). The electrowetting effect is modelled

only by its influence on the wetting properties: when there is a contact

between the drop and the electrode, the contact angle is set to Lippmann

contact angle varying from 50 to 90̊ . As soon as the drop is disconnected the

contact angle is set to Young’s contact angle (140 )̊. For simulation stability,

the contact angle on the electrode is 45 åt the bottom and 90 o̊n the side. A

no-slip boundary conditions is applied on the walls of the cell in non-wetting

conditions (180 c̊ontact angle). The surrounding fluid (fluid 1) is oil with

viscosity 5 mPas and density 0.9. The drop (fluid 2) has a viscosity ranging

from 2 mPas to 70 mPas close to the viscosities used in the experiments. The

surface tension of the fluid 2 in 1 is 38 mNm.

Results: Oscillations

The shape of the drop during the oscillations is well rendered by the simula-

tion as displayed in Fig. 3.31 and 3.32. In particular the inertial effects are

correctly reproduced and can be compared to the experimental observations.

The viscous drop remains almost spherical while the non viscous drop un-
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Figure 3.30: Grid used for the numerical simulations.

dergoes large deformations. The viscous drop correspond to Oh � 1 while

the non-viscous drop is at Oh = 1. The observed features like the inertial

waves are thus obtained for the correct value of the Oh number which is then

confirmed to select the regime of oscillations.

Comparison with experimental data

The connected and disconnected times tON and tOFF have been measured

for a microlitre viscous drop on the simulations as a function of distance and

contact angle and are displayed in the Table 3.1. The error on the values

given below is about ± 1 ms due to the error on the determination of the

breakup time. At fixed distance tON increases when the contact angle in-

creases: this is expected since the driving force of the motion decreases. At

fixed contact angle, tON decreases when the distance increases. The driving

force is constant but the neck break earlier.

On the other hand, at fixed distance tOFF is almost constant: the driving

force of the relaxation is constant since every runs have been performed at

fixed θY which explains this effect. At fixed contact angle, tOFF increases

with the distance: the drop has to relax more to touch a higher electrode.

93



CHAPTER 3. OSCILLATING DROPS

Figure 3.31: Numerical results for the drop dynamics during the oscillations.

Inertia-capillary oscillations.

All these numerical results are thus in qualitative agreement with the ex-

pectations and the experimental observations. Moreover the variation of the

oscillations frequency 1/(tON + tOFF) is of the order of the values obtained

experimentally for the same drop. A direct comparison is however difficult

since the times of the connected state and disconnected state vary strongly

in the numerical simulations as a function of d or θ. The idea here is not

to obtain a full quantitative agreement between the numerical simulations

and the experiments but to reproduce the observed phenomena qualitatively.

This allows us to conclude that a contact angle switch reproduces the ex-

perimental observations obtained when the switch is electrically induced. In

this case the oscillations are obtained regardless of the complex scenario at

the breakup which acts here simply as a trigger of the contact angle modula-
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Figure 3.32: Numerical results for the drop dynamics during the oscillations.

Viscous-capillary oscillations.

tion. In this situation of course, the simulation can not explain the unstable

oscillations nor the electrical process at the breakup.

3.5.5 Application to mixing

The large amplitude oscillations obtained in the oscillation regime are an

interesting property for drop mixing at small scales. Indeed mixing in these

confined system is an issue: the Reynolds number being usually small the

flows are usually reversible and the mixing is difficult. Some other electro-

wetting- based systems for drop mixing have been proposed by other au-

thors [100, 101] based on drop motion on arrays of electrodes. Here it is not

necessary to use an additional patterning by electrode since the oscillations

will act as the source of the mixing. As a proof of principle we show the mix-

ing of a microlitre water-like drop presented in Fig. 3.33. In the begining,
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θ (deg) ON/OFF d (mm)

0.90 1.00 1.10 1.15 1.17 1.20

50 ON 40

OFF 7

65 ON ∞ 51 14 13 13 9

OFF 6 8 9 10 13

75 ON ∞ 25 16 14

OFF 8 9 10

85 ON ∞ 32

OFF 10

Table 3.1: Numerical simulations results: time in the connected state (ON)

or disconnected state (OFF). The times are in ms

a drop of water and dye is merged with a drop of water and glycerol. The

fluorescent dye is thus at the top of the merged drop. The voltage is applied

and the drop oscillates at about 80 Hz, in the inertia-capillary regime: mix-

ing is obtained in about two secondes, at least 2 orders of magnitude faster

than the diffusive mixing.

Downscaling

Downscaling is a constant concern in microfluidics. How does our mixing

device behaves when the sizes shrinks ? We have seen above that two regimes

of stable oscillations are observed depending on the value of the dimensionless

number Oh = η/
√

ργr. When Oh is larger than 0.1 the oscillations are

capillary-viscous while they are capillary-inertial at Oh < 0.1. For a water

drop Oh = 1 is reached at

r =
η2

ργ
≈ 10−6m

The drop size can decrease up to the micron and the mixing will still be

capillary-inertial driven. The frequency of the oscillations is then given by the

balance of inertia and capillarity which leads to and increasing frequency with

a decreasing drop size F ≈
√

γ/(ρr3). This result holds for low viscosities

but for a viscous drop of glycerol at 100 mPas, the crossover in size is at 1
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Figure 3.33: Microfluidic mixing using an oscillating drop. An heterogeneous

drop (Water and dye at the top, water and glycerol at the bottom) oscillates

at 80 Hz leading to full mixing in about 2 s, 100 times faster than the diffusive

mixing. Experiment done by Dagmar Steinhauser (See Steinhauser [102].)

cm ! For glycerol independent of the size the oscillations will be capillary-

viscous. In this situation the speed is determined by the capillary speed and

the mixing efficiency is expected to decrease due to the decrease of surface

waves amplitude. But mixing is still expected: indeed there is an asymmetry

in the oscillations between spreading and receding which makes the flow in

the drop irreversible. In the absence of this asymmetry the mixing should

vanish due to flow reversibility.
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3.6 Conclusions

Experiments – An oscillatory regime has been found in a simple elec-

trowetting experiment and a static model based on the stability of the cap-

illary neck is found to be in good agreement with the experimental observa-

tions. For each drop size a threshold voltage exists above which oscillations

are present. The dependence of the threshold voltage as a function of neck

and drop size is in good agreement with the simple static model as long as

the volume of the neck is negligible with respect to the volume of the drop.

The frequency of the oscillations is driven either by the hydrodynamical re-

laxation (fast oscillations) or by the electrical relaxation (slow oscillations).

These two different regimes are determined by the dynamics of the capil-

lary neck break up and by its electrical resistivity. When the hydrodynamic

process of the break up is fast compared to the flow of charge through the

neck some charges are left in the drop. The amount of charge is determined

by the phase of the voltage at the very moment of the break up and can

be considered as a random distribution. The charges have to flow through

the insulating layer and the charge in the drop determines the time of drop

relaxation. The oscillations thus obtained are erratic and slow. On the other

hand, when the charge carriers have the time to flow out of the drop during

the break up, the drop will be discharged at the moment of the break up

and the oscillation process is hydrodynamically driven. The time-scale of

such a relaxation are for the drop sizes we consider of the order of 10-100 ms

which is in good agreement with experimental measurement of the frequency.

Comparison with previous systems – The oscillations presented here

can be compared to the oscillations previously obtained in another set-up [47].

There is no fundamental difference between the two systems except the in-

troduction of an additional length-scale in our case which is the electrode

diameter.

Application – This simple system based on electrowetting is convenient

to use in electrowetting based devices. The flow pattern inside the drop and

the large amplitude variations of the free-surface can be used to promote

mixing in drops for microfluidic devices.
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The threshold voltage is a simple function of the ratio of electrode radius over

drop size. Decreasing drop size and electrode size with this ratio constant will

not modify the threshold voltage which is a nice property to mix small drops.

Moreover the frequency of the oscillations is increasing with decreasing drop

size which is an advantage when drop size usually reduces Reynolds number

and then reduce the mixing possibilities.

Outlook – A number of problems are still unsolved and represent inter-

esting subject of research. First the capillary breakup in DC and AC electric

field can be studied. The influence of the electric field has been observed and

one can study the influence of the electric field on the time of the breakup,

on the power law exponents, on the shape of the neck. . . Then, the non-linear

dynamics at the threshold of oscillations can be studied in order to give a

better description of the transition. Finally the flow patterns in oscillating

drops can be studied in order to find the optimum of mixing efficiency. This

should be performed using a sheet of light and a non-diffusing dye in order

to track the patterns on larger time-scales.
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4.1 Introduction

Fluid actuation in microchannels has received a lot of attention lately driven

by the needs of microtechnology, e.g the lab-on-a-chip concept. The objective

is to provide a device for substances manipulation in the liquid phase that is

downscaled to the micrometer range, fast and reversible using a low power-

consumption electrical source. Electrowetting seems to be a suitable solution.

The actuation of liquid in closed channels has already been demonstrated us-

ing electrowetting [37], the fluid being actuated by the electrocapillary pres-

sure induced by the electrical charges or between two parallel plates in the

Pellat experiment [44]. Electrowetting is also nowadays commonly used as a

way to manipulate droplets for digital microfluidic applications [57, 100, 101],

the droplets motion being induced by an heterogeneous electrical field pro-

duced by patterned electrodes. Using patterned electrode on flat surfaces

morphological transitions have been obtained between drops and liquid fil-

aments [46, 48]. These transitions provide a nice tool for microfluidic since

they fulfill the basic requirements of fluid actuation. In addition they are

based on the active control of wettability which should provide the down-

scalability.

In the capillary framework, the interactions between substrate structures and

liquid shapes have been initially studied by Cassie [9] and Wenzel [10] who

first studied how the contact angle of a drop is modified by the roughness

of the substrate. The effect of geometrical topographies on the wettability

is now used to create superhydrophobic surfaces [14] which are fully non-

wetting with contact angle of about 180 degrees. These surfaces have a tech-

nological interest to create self-cleaning surfaces. The interactions of solid

structures and liquid is studied nowadays by several authors: Jopp et al. [15]

showed recently that the wetting behaviour of a surface can be determined

by free-energy calculation. Extensive studies have been performed in or-

der to determine the liquid morphology on composite surfaces with patterns

of wettability [19, 20, 18], with topographies [24, 21, 23] or combinations

of wetting and topographic structures [26]. Seemann et al. [25] extensively

studied experimentally and theoretically the case of open-air channels with

a rectangular cross-section which has potential applications for eletrospray

sources [103]. They predicted the possible morphologies for a liquid drop de-

posited on a groove in a complete morphological diagram and compared them
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to the experimental observations (see Fig. 4.1). Contrary to the case of flat

Figure 4.1: Drop shape on on rectangular channels. Top: morphological

diagram for a drop on rectangular channels. A is the aspect ratio D/W of

the channels and θ the contact angle on the flat surface. (Courtesy of Ralf

Seemann and Martin Brinkmann, see [25]). Bottom: Corresponding shapes;

droplets (D), filaments with positive pressure (F+), with negative pressure

(F-), pW and cW refers to filament wetting the corners of the channels.

substrate, the liquid morphology can exhibit a negative Laplace pressure [22]

which is expected to suck the liquid out of a reservoir. In these previous ex-

periments, the surface wettability was chemically modified and determined

once and for all by the surface energies of the substrate and the liquid. Here

we investigate an actively induced morphological transitions between a drop

and a liquid filament wetting the channels using electrowetting as a way to

modify the wettablity of the substrate.

In electrowetting experiments on flat substrates a modulation of the con-

103



CHAPTER 4. FLUID ACTUATION - STATICS

tact angle θ of a drop on a substrate is achieved by depositing drops of a

conducting liquid on a conducting substrate on top of which an insulating

layer has been previously formed [53]. The voltage is applied between the

conducting substrate and an electrode immersed in the drop as shown in

Figure 4.3(a) and the modulation of the contact angle is described by Lipp-

mann’s equation [104]:

cos θ = cos θY +

(
U0

UL

)2

(4.1)

where UL = (2Tγ/ε0εr)
1/2 is a caracteristic of the system, γ being the liquid

/ vapor interfacial energy, ε0 the dielectric permittivity of vacuum and εr the

dielectric constant of the insulating layer and θY is Young’s contact angle of

the liquid on the substrate which is recovered at zero voltage. Lippmann’s

equation (4.1) accounts for the energy contribution of the electrical field as an

additional surface energy related to the solid / liquid interfacial energy which

decreases when the applied voltage is increasing. In this frame electrowetting

is included in capillary theory using a modified interfacial energy of the solid

/ liquid interface and is the right tool to modulate the contact angle of the

drop on the substrate in order to investigate the morphological transitions

expected from a theoretical point of view. However this ideal behaviour stops

above a saturation voltage for which the contact angle remains more or less

constant, the physics of the saturation being still subject of investigations.

4.2 System

Among the possible substrates used for electrowetting experiments [60], sil-

icon wafers are the most versatile and convenient to process substrates for

technological reasons. We used conducting arsenic-doped silicon wafer as

solid substrates. Rectangular channels have been produced using anisotropic

ion etching on the native silicon wafers. A silicon oxide dielectric layer of

thickness T = 1.1 ±0.1µm has then been thermally grown on top. Using this

process channels of width W and depth D ranging respectively from 15 to

50 µm ± 1 µm for a fixed depth of 20 µm ± 1µm have been produced (see

Figure 4.2).

The aspect ratio A of the channel, defined as D/W goes then from 0.40 to

1.33. In order to have contact angles with water or glycerol larger than 90 de-
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(a) (b)
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Figure 4.2: Channel etched in silicon wafer. (a) Sketch of the rectangular

channels: W= 15 - 50 µm, D= 10 - 20 µm, T =1 µm. (b) SEM picture of

an array of rectangular channel W ≈ 30 µm, D ≈ 20 µm,(c) SEM picture

of the rectangular channel W ≈ 14 µm, D ≈ 20 µm, (d) zoom on the top

corner of the groove showing the insulating layer T ≈1 µm.

grees at zero voltage an additional monolayer of OTS (OctadecylTrichloroSi-

lane) used as an hydrophobic coating has been deposited on top of the silicon

oxide layer from a liquid phase following a standard protocol [72].

The liquid used is a mixture of glycerol (46.7% in weight), water (51.7%)

and salt (1.6%). The viscosity η of the solution, measured using a stress-

controlled rheometer ( Rheometric Scientific SR-5000 ) is η = 5 mPa×s in

agreement with the viscosity tables of the mixture and do not show variation

with the applied shear stress in the measurement range 10 - 103s−1. Glyc-

erol is used to reduce the effect of evaporation of water and salt (NaCl) to
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increase the conductivity of the liquid (σ = 0.7 S×m measured with Hanna

HA8733 conductimeter). However, dealing with small drops a significant

fraction of water evaporates after deposition leading to a drop composition

at equilibrium which depends mainly on the local humidity and hygroscopy

of the glycerol. Since the humidity range is 45 to 55% in our experiments

the final composition is not fully controlled and can vary which leads to daily

variations of the conductivity or viscosity of the drop. Measuring drop vol-

ume after deposition it is however possible to estimate the final composition

assuming that only water evaporates. After a few minutes the drop is at

equilibrium with about 80% glycerol confirmed by NMR measurement. The

AC voltages U0 ranging from 0 to 120 V (rms value at frequency f between

1 and 30 kHz) are applied between the drop and the substrate. In those

conditions a liquid mixture at a composition close to the estimated equilib-

rium composition (glycerol (80.4% in weight), water (16.8%) and salt (2.7%)

- σ =0.14 mS/cm, η = 82 mPa×s, γ ≈ 65 mN/m) has been prepared and

the Lippmann curve cos θ as a function of the applied voltage U0 has been

measured on flat areas of the sample. The contact angle measurements do

not show significant variations with the position on the wafer indicating a

good uniformity of the OTS layer, confirmed by a contact angle hysteresis of

5-7 degrees of water in air. The curve shown in Figure 4.3(b) displays the

classical quadratic behaviour below 50 V, called Lippmann’s regime and a

saturation regime above 50 V where the contact angle varies in a quasi-linear

fashion.

The influence of gravity on the experiments is neglected since the typical

sizes of the channels and drops are smaller than the capillary length of water

or glycerol Lc = (γ/ρg)1/2, γ and ρ being the surface tension and densities

of the liquid in air. The sizes are however large enough to neglect the ef-

fects of line tension or edge effects [105] which become non negligible below

the micrometer scale and to estimate the capacitance of the 3-dimensional

structure of the channel as combination of planar capacitances.

4.3 Experiments

According to the work done by Seemann et al. [25] the morphology of a

drop on a channel depends only on two parameters, the contact angle of
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Figure 4.3: (a) Principle of electrowetting on dielectric (EWOD). A volt-

age is applied between an electrode immersed in a conducting drop and the

substrate. A dielectric layer insulates the drop from the substrate. (b) Lipp-

mann curve for the experimental set-up used. The contact angle typically

varies between 105 to 50 degrees for voltages between 0 to 50 V. The fit in

the region below 50 V gives cos θY = -0.04 and UL = 82 V.

th

the drop on the planar substrate and the aspect ratio of the channel. We

are interested in the morphological transition expected from drops on the

channel ((D) according to their notation) to liquid filament (F).

4.3.1 Preliminary experiments

The wetting case – On our structured surfaces, various morphologies

were observed when a glycerol drop is deposited on the channels before de-

position of the hydrophobic layer (θ for glycerol on silicon oxide is close to 45

degrees, wetting case) as displayed in Fig.4.4. On the wetting surface a drop

has different possible states (Fig. 4.4). For a drop on top of the rigdes out of

the channels (a and a’) the contact line is pinned at the edge of the channel.

The drop spreads preferentially in between the two channels leading to an

anisotropic shape. Increasing the volume of the drop above a critical volume

will destabilize it. For a drop in the channels, at a volume smaller than the

total volume accessible in the channel, the drop has an elongated shape (the

filament F (b)). Increasing the volume will result in the apparition of a bulge
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Figure 4.4: Top view of a droplet on a surface with grooves: morphologies

observed in the wetting case: the typical volume of the liquid structure in-

creases from bottom to top.

similar to the one obtained by Gau et al. [19] which coexists with the filament

because of the finite length of the channel (c, c’). Indeed if the channels were

infinitely long the bulge would disappear in the channel in a configuration

similar to (b). At even higher volumes the drop will spread in a neighbouring

channel with a bulge linking two channels (d), three channels (e, e’) or even

more (not displayed). It has to be noticed that only one bulge can exist for

a given channel. Indeed two bulges can coexist only if they have the same

size which is an unstable situation: the smaller will disappear in the biggest

due to the excess of pressure as displayed in Fig. 4.5.

The non-wetting case – On the non-wetting surface (see Fig.4.6, on the

OTS layer θ for glycerol on OTS is close to 90 degrees) the situation is dif-

ferent: the wetting in the channel is difficult to observe. Indeed at small

volumes the drop sits in between two channels (a, b). When the volume is

increased the drop bridges above the channel without wetting it: this is a

fakir drop with air entrapped underneath also called a Cassie drop (c, d, e).

This situation is metastable [14] and the liquid can be pushed in the channel

leading to a Wenzel drop which wets partly the channel. The bulge is in this

case a stable shape. This bulge can be mechanically extended to the end of
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Figure 4.5: Unstable situation for a drop on a channel: the smallest drop

disappears in the largest due to the excess of the Laplace pressure. The time

step between two succesive pictures is 72 ms. The total length of the grooves

is 2 mm.

Figure 4.6: Top view of a droplet on a surface with grooves: morphologies

observed in the non-wetting situation. The volume of the liquid structure

increases from bottom to top.

the channels where it becomes pinned: a stable liquid finger is thus formed

due to the pinning condition and and increase of the volume will lead to the
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formation of a bulge (i).

4.3.2 Electrowetting experiments: metastable states

In these last experiments we changed the contact angle by chemically chang-

ing the surface. However the only important parameter is the contact angle.

While changing the contact angle using electrowetting from a value larger

than 90 degrees to a value close to 50 degrees, the transition line between

(D) and (F) is expected to be crossed for channels of aspect ratio of order 1.

In other words we expect to make a transition between the two states of the

figure 4.7. In order to have a reversible transition it is necessary to avoid the

Figure 4.7: Principle of the actuation studied: an active control of the surface

tension via electrowetting is used to induce the filling transition observed in

the passive situation.

states involving pinning. Pinning leads to metastable shapes which reduces

reversibility. The experiments were performed as follows: a drop of the solu-

tion was deposited on an array of channels. The droplet is in a metastable

Cassie state. When the voltage is applied directly to the drop a family of

metastable shapes is observed. They destabilize at high voltage leading to a

Wenzel drop (Fig. 4.8, top). Surprisingly the Cassie state survives even at

50 V which corresponds to a contact angle close to 75 degrees. When the

voltage is set to zero and re-increased the shape involve only Wenzel drops

(Fig. 4.8, bottom). The drop exhibits an anisotropic shape similar to the one

already observed on flat chemically patterned surfaces by Morita et al. [106].

The wetting anisotropy in our case has the same origin namely the anisotropy

of the solid surface. Since the Cassie drop is metastable the transition from

Cassie to Wenzel drop will depend on the way the experiment is performed

and thus will reduce the reproducibility of the results. It is thus necessary

to start the experiments with a Wenzel drop.
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Figure 4.8: Metastable Cassie drops. The width of the channel is w=50µm

and the depth d=20µm

4.3.3 Reversible electrowetting induced transitions

In the following, at the beginning of the experiments, the drop is pushed

in the channels either mechanically by pressing with the electrode or by a

small voltage pulse. Once the drop is in the Wenzel state, the voltage U0

between the drop and the substrate is increased by steps. Top views of

the drop are acquired using optical microscopy with a CCD camera (Philips

DICA). The liquid filament is not directly observable in the channel due to

the low curvatures and slopes of the interface along the channels. At the end

of the filament where the curvature of the free-surface is large enough the

light is deflected and the end of the filament appears black which gives the

possibility to measure the length of the liquid filament as a function of the

applied voltage (Fig. 4.9).

In the case of a drop deposited on channels with aspect ratio of 1.33

(D=20 µm, W=15 µm), the typical images obtained are displayed in Fig-

ure 4.10(a) with the corresponding rms value of the AC voltage at 20 kHz.

Below a threshold voltage UT = 43 V ± 2 V, a short liquid filament is growing

with increasing voltage. The liquid filament becomes much longer above the
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L w

Figure 4.9: Measurement of the length of the liquid filament. In this case,

W =40µm, D =20µm,U0=85 V at 20 kHz. The length is L =0.81 mm ± 5

%.

critical voltage. In order to study the influence of the capillary pressure and

the electrical properties the experiments were repeated on the same drop for

several frequencies and for a fixed frequency with various drops. The results

are displayed in Figure 4.10(b). The voltage was increased gradually and the

equilibrium length L∞ was measured on the pictures. In the following L∞

will refer to the equilibrium length and L a length which does not necessarily

correspond to equilibrium. When the voltage is turned down to 0 the drop

nicely recedes to the mother drop: the transition is thus reversible.

In these experiments, the threshold voltage does not depend on the applied

frequency but the equilibrium length of the liquid channel is a function of

the frequency: the key feature here is that the length decreases with an in-

creasing frequency.

Fixing the frequency at 20 kHz the experiments were carried out as follows

for different drop sizes on channels of aspect ratio 0.66: the voltage was in-

creased by a single step from 0 to a value U0. The steady state value of

the length L∞ was measured using an image processing routine in Matlab.

The end of the channel is detected as the point where the grey level is the

mean value of the maximum and the minimum gray level which gives an

accuracy of about 10µm on the determination the length. The experiments

are performed for different values of U0 and for various drop sizes. The re-

sults are displayed in Figure 4.11. Two parameters characterize the mother

drop. The ratio of the size of the drop over the size of the channel (V 1/3/W )

and the number of channels wetted by the drop Nc. A drop deposited on

an heterogeneous substrate does not have a single possible configuration but

different morphologies defined as local minima of the free-energy [23]. The

two parameters have an influence on the pressure of the drop. The effect

of a decrease of the size of the drop is to decrease the threshold voltage as
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Figure 4.10: (a) Top-view of the channels for different voltages. The fre-

quency of the voltage is 20 kHz and the drop wets 5 channels. On the right

of the drop one see the contacting electrode. (b) Measurements of the length

as a function of the applied voltage for different frequencies. The threshold

voltage is obtained at 43 V. Inset: rescaling of the data by ω1/2 showing the

collapse on a single master-curve.

displayed in Figure 4.11 (circles, squares and diamonds). For a fixed drop
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size (V 1/3/W = 9) the drop confined to three channels (diamonds) has a

threshold smaller than the drop confined to four channels (triangles). These

observations are compatible with pressure argument: the Laplace pressure

of the small drop pushes the liquid in the channels more than a large drop.

The confinement of the drop over three channels increases also the pressure

in the drop compared to a confinement over four channels which also pushes

the drop in the channels. When the voltages are rescaled by the threshold

voltage (see inset) the length does not show any dependence on the drop

size: the equilibrium length is not obtained by a balance of capillary pres-

sure of the drop and the pressure of the liquid in the channel. According to
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Figure 4.11: Measurements of the length as a function of the applied voltage

for different drop sizes. Nc is the number of channels the drop wets. The

threshold voltage depends on the reservoir pressure. Inset: rescaling of the

voltages by the threshold voltage UT showing that the length does not depend

on the reservoir pressure.

the work of Seeman et al. the threshold voltage is expected to depend on

the geometry of the channels and more precisely on the aspect ratio of the
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channels. The experiments were performed for the different aspect ratios at

approximately constant V 1/3/W ≈ 10 and for a fixed voltage frequency of

20 kHz. The equilibrium length is measured and plotted versus the applied

voltage and the results are displayed in Figure 4.12. The threshold voltage is

a function of the aspect ratio which agrees with Seeman et al. analysis based

on a capillary model. The length after the transition depends also on the

aspect ratio via a simple scaling in (1 + 2A)1/2 (see inset) which shows the

influence of the channel dimensions on the electrical properties of the liquid

filament.
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Figure 4.12: Measurements of the length as a function of the applied voltage

for different aspect ratio. The threshold voltage depends on the aspect ratio.

Inset: rescaling of the voltages by the threshold voltage UT showing that

the length does also depend on the aspect ratio of the channel via a scaling

(1 + 2A)1/2.

In summary, we experimentally observed a capillary driven transition and

a finite length behaviour beyond the transition:

1. the transition voltage depends only on capillarity and Laplace pressures
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and not on electrical properties. The threshold voltage depends on the

way the drop is placed on the substrate even if the size is always fixed.

However the effect in terms of voltage is only a few percent;

2. the behaviour of the liquid beyond the transition depends on the elec-

trical properties of the liquid and the solid substrate and not on the

capillary pressures. On a capillary view point one does not expect any

equilibrium length: a balance of pressure (or energetic arguments) pre-

dicts that the drop vanishes entirely in the channel. Indeed, below a

threshold contact angle the pressure in the channel is smaller than the

pressure in the drop. The equilibrium length is thus a consequence of

electrical phenomena;

3. the dimensions of the channel also have an influence on the equilibrium

length.

In the following section we will model the electrical properties of the liquid

in order to explain these experimental observations.

4.4 Modelling

4.4.1 Transition

Assuming a channel in equilibrium with a reservoir at zero Laplace pressure,

increasing the length L of the liquid filament by dL requires a capillary energy

dEc:
dEc

WγdL
= 1− (1 + 2A) cos θ (4.2)

The wetting of the channel is reached when dEc < 0 i.e. θ < θ0
T =

arccos 1/(1 + 2A). This equation is represented by the line of equilibrium

between F+ and F− in the θ vs A morphological diagram. This description

corresponds to a capillary situation where only interfacial energies have been

considered. In the case of electrowetting an additional electrical term is intro-

duced in order to take into account the influence of the electrical field. This

term assumes that the capacitance of the channel is evaluated as the sum

of three planar capacitances, two corresponding to the edges and one to the

bottom of the channel which is a fair approximation as long as T � D, W .

In this situation, Eq. 4.2 holds provided that the contact angle is Lippmann’s
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angle: the transition occurs when the Lippmann’s angle of the mother drop

equals the transition contact angle θ0
T of the capillary model. The effect of

electrowetting is thus to act as an additional term in the capillary theory as

usually described. This capillary description is not sufficient to describe the

behaviour beyond the transition: a capillary model predicts that the drop

vanishes entirely in the channel.

4.4.2 Equilibrium length

In order to explain the finite length effect, we have to come back on the

implicit assumption that the voltage is constant along the liquid finger. Let

us assume that a liquid filament exists and that the voltage along the channel

is a decreasing function of the position X as the result of the finite electrical

conductivity of the liquid. At the entrance of the channel the voltage is

equal to the applied voltage U0. The energy dE(X) corresponding to a

modification of the length of the channel by a infinitely small length dL is

the sum of capillary and electrical energy and depends on the position X:

dE(X)

WγdL
=

dEc

WγdL
− (1 + 2A)

(
U(X)

UL

)2

(4.3)

dE(X) is thus minimal at the entrance of the channel and increases along the

channel. When U0 = 0, dE(X = 0)/dL > 0 and thus ∀X dE(X)/dL > 0 :

no liquid finger is formed; if there is one it will recede entirely to the mother

drop. Increasing U0 in the drop, dE(X = 0)/dL > 0 until U0 reaches the

threshold UT defined as cos θY + (UT /UL)2 = 1/(1 + 2A) for which dE(X =

0) = 0. At U0 > UT , dE(X = 0)/dL < 0: wetting becomes favourable.

A liquid finger starts to leak in the channel. At the tip of the liquid finger

the voltage U(X = L) is smaller than UO (according to our assumption

of voltage decay). The energy dE(X = L)/dL is negative as long as the

voltage at L is larger than UT . Thus beyond the threshold, assuming a loss

of voltage along the liquid finger, one finds an equilibrium length L for which

the voltage at position X = L is equal to the threshold voltage of filling

UT . For this equilibrium position, at the tip dE(L) = 0. In the case of a

infinitely conducting liquid, the voltage is constant: beyond the transition

UT the liquid finger length would be increase continuously until the reservoir

is empty since for all L, U(X = L) = U0 > UT . In the case of an infinitely

conducting liquid, one find that the length L∞ diverges to infinity: the drop
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would entirely vanish in the channels. The length of the liquid finger is then

expected to be increasing with increasing conductivity. The quantitative

determination of the length as a function of the applied voltage requires then

the knowledge of the variation of the voltage as a function of the position,

depending on the electrical properties of the system and will be derived in

Sec. 4.4.4.

4.4.3 Pressure effects

The results obtained for a reservoir at zero pressure are slighlty modified

when the reservoir has a positive Laplace pressure like in the case of a drop

reservoir. In this case the energy has to take into account the work of the

pressure forces which requires the computation of the liquid - vapor interface

shape at the given pressure. For a drop, the problem is not so simple since

the pressure of the reservoir is not constant for three reasons: i) Some liquid

flows out of the mother drop: the Laplace pressure increases since the drop

size decreases due to the outflow, ii) the confinement of the drop along the

stripes has an influence on the Laplace pressure and the shape deviates from

the spherical cap [23] as it can be seen on the Figure 4.10(a) where the

mother drop elongates along the stripes and iii) the contact angle of the drop

is decreasing while increasing the voltage leading to a decrease of the Laplace

pressure. The first effect is neglected as soon as the drop volume V is larger

than the volume of the channels which is the case in most of the practical

cases we deal with here (V � L∞×W×D). The second point could be solved

by calculating completely the pressure of the drop at a given voltage which

would impose the pressure. The energy balance has then to take into account

the curvature of the interface in the channel determined by the pressure and

the work of the pressure forces. Ignoring the second point, the third effect

is solved calculating the variation of the Laplace pressure with contact angle

under the spherical cap assumption. However the results have to be taken

with care since the spherical cap assumption does not hold for small drops:

dEc
V

WγdL
=

V 1/3/W

f(θ)
arcsin

f(θ)

V 1/3/W
− (1 + 2A) cos θ + 2A

f(θ)

V 1/3/W
(4.4)

where V 1/3/W is the size of the drop rescaled by the width of the channel,

and

f(θ) = (3/π)1/3(2− 3 cos θ + cos3 θ)1/3
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(see Appendix C). The wetting of the channel is reached for equation for

dEV < 0. The coexistence of a drop and a liquid filament is reached at a

given A for θ such as dEc
V = 0. The numerical solution shows the increase of

the transition contact angle θV
T when the drop size decreases (see Fig. 4.13).

Asymptotically for V 1/3/W →∞ the value cos θ0
T = 1/(1 + 2A) is recovered

which correspond in practical case to V 1/3/W > 20. However this resolution

does not take into account the effect of grooves of the drop shape. The size

effect was calculated for the different drops and compared to the experiments.

The relationship between the contact angle and the voltage has been obtained

using the electrowetting curve. The results are displayed in Figure 4.13. The

dashed lines correspond to the transition expected at zero pressure and the

curve show the transition expected from the spherical cap assumption of the

reservoir drop. The points correspond to the experiments. The values of the

contact angle at the transition observed in the experiments are in a region

close to the one expected from the previous analysis. The size effect are also

in qualitative good agreement with the experimental observations but the

quantitative comparison, and in particular the size effect. The main reasons

for the mismatch can be attributed to the effect of the electrode on the drop

shape which is critical for small drop size and the validity of the spherical

cap assumption.

4.4.4 Electrical model

The finite length effect is caused by the decay of voltage along the liquid

finger. In order to predict the length as a function of the applied voltage the

determination of the function U(X) is required. The electrical dependence

above the threshold it explained by looking at the liquid filament as an elec-

trical component. The liquid filament is a conducting material surrounded

by an insulating layer. In terms of electrical properties, it is equivalent to

a coaxial cable which is known to display a voltage loss [107]. In our case,

the end of the filament is free to move which means that we have here a

free-ended coaxial cable of length L∞. This system is modelled by a string of

capacitance and resistance along the direction X of the channel, as displayed

in Figure 4.14.

dR is the resistance per unit of length of the liquid filament and dZC
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Figure 4.13: Comparison of the experimental transition contact angle with

the capillary models. The dashed line correspond to the transition expected

at zero pressure and the full line is obtained including pressure effects via

a spherical cap assumption for the reservoir drop. Experiments show good

agreement with the model.

the capacitance per unit of length of the channel. The exact value of dR

and dZC depends on the geometry of the channels and on the shape of the

liquid / air interface. In the model the cross-section of the liquid filament is

approximated as constant and flat all along the channel giving a rectangular

cross-section for the liquid filament which simplifies the expression of dR =

dX/(σWD) and dZC = T/(jωε0εr(2D + W )dX). For such a system the

relationship between the voltages U(X), U(X − dX) and U(X + dX) leads

to the differential equation (see Appendix D):

d2U

dX2
= 2j

U(X)

λ2
(4.5)
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Figure 4.14: Top: sketch of the liquid channel. A slice dx of the channel has

displays a resistance linked to the area of the cross-section and a capacitance

linked to the wetted area of the substrate. Bottom: equivalent electrical

circuit for the liquid filament: the voltage along the drop is not constant

where j is the complex unit and λ the only lengthscale of the problem:

λ =

√
1

ω

2Tσ

ε0εr

WD

W + 2D

λ2 is the product of two length-scales, an electrical length-scale 2Tσ/(ωε0εr)

depending on the material properties and on ω and a geometrical length-

scale WD/(W + 2D) (the ratio of area of crossection over perimeter of wet-

ted surface). For cylindrical channels or triangular grooves one will find

the same electrical length-scale and different expression for the geometric

length-scale. In our case, the geometric length-scale is of order the typical

size of the channel and always limited by the smallest dimension: if D � W ,

WD/(W + 2D) ∼ D and W � D, WD/(W + 2D) ∼ W/2

In order to solve Eq. 5.23, the lengths are rescaled by λ: x = X/λ,

l∞ = L∞/λ and the voltages by the threshold voltage UT : u(x) = U(x)/UT ,

u0 = U0/UT , U0 being the voltage applied in the drop. Before solving the

equation we notice that λ gives the length-scale for experiments performed at

different frequencies for a given drop on given channels. Scaling the results

of Figure 4.10(b) according to the power-law ω1/2 shows the collapse on a

single master curve (see inset). One consequence of this analysis is that at
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zero frequency the length scale is diverging which means that the whole drop

will vanish in the filament: the complete morphological transition is then ex-

pected for direct current provided that the volume accessible in the channel is

of the order of the volume of the drop. The scaling of λ with (1+2A)1/2 is also

demonstrated by the collapse on the master curve displayed on Figure 4.12.

Moreover λ does not depend on the reservoir pressure which explains that the

data of Fig. 4.11 obtained for different drop sizes collapse on a master curve

when the voltage only is rescaled by the threshold voltage. The electrical

model reproduces correctly all the experimental observations.

4.4.5 Comparison with experiments

A quantitative study is now performed solving Eq. 4.5. Three boundary

conditions are required to solve this second order differential equation with

unknown length l (the voltages are rescaled by threshold voltage u = U/UT

and length by λ): 
u(x = 0) = u0

du

dx
(x = l∞) = 0

u(x = l∞) = 1

(4.6)

The first two conditions are purely electrical: the voltage at the entrance

of the channel is the voltage in the drop U0 and the current at the end is

zero (electrical equilibrium). The third one is obtained by the argument

developed above: the voltage at the end of the channel is the threshold

voltage: U(L∞) = UT . This condition creates the link between the capillary

theory of the transition and the influence of the electrical properties on the

behaviour after the threshold. Using these three boundary conditions, the

length of the liquid channel is calculated. An analytical expression of the

voltage along the channel is obtained (see Appendix D):

u(x) =

√
cosh2(l∞ − x)− sin2(l∞ − x) (4.7)

The length l∞ as a function of u0 is given by equation 4.6 which cannot be

inverted analytically: the inversion has been performed numerically. The

asymptotics for l∞ ∼ 0 and for l∞ →∞ read:

l∞ ∼ 31/4(u0 − 1)1/4 , l∞ ∼ 0 (4.8)

l∞ ∼ ln(2u0) , l∞ →∞ (4.9)
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These two equations stands for:

1. the sharp transition which occurs with an exponent of 1/4;

2. the absence of saturation of the length with the applied voltage: the

length is increasing logarithmically with the voltage. In practical cases,

this increase is stoped by the break-up of the insulating layer in the re-

gions where the electric field becomes larger than the electrical strength

of the insulating material. Moreover it is noticeable that the satura-

tion of the length of the liquid finger is independent on the saturation

of contact angle. Indeed, the length of the liquid finger does not show

any saturation even of the contact angle is in the saturation regime.

This effect is due to the fact that the length is only determined by

the electrical behaviour of the liquid finger and not by the actual value

of the contact angle. Indeed as soon as the contact angle is smaller

than the threshold, the length of the liquid finger becomes infinite in

the capillary frame. Here due to voltage loss there is a finite length.

However as long as the breakup is avoided the voltage can be increased

indefinitely, the length will continue to grow.

The model curve is then compared to our previous experimental results on

the Figure 4.15. The shape of the curve is well rendered by the model curve

as well as the value of the scaling with λ which is in reasonable agreement

with the expectations considering the lack of accuracy in the determination

of σ: with σ=0.14S×m, λω1/2 = 0.21 m× s1/2 which compares well with the

0.26 found experimentally. The threshold voltage is in reasonable agreements

with the values expected from the capillary transition.

4.4.6 Discussions

The model is not valid in the case where the volume of the drop is changing

significantly during the filling of the groove the variation of the length as a

function of the applied voltage does not follow the model behaviour. It is

clear that in the case where the whole drop vanishes in the channel the length

of the filament will be asymptotically smaller than the one expected from the

model. The case of drops of volume of the order of the channel volume gives
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Figure 4.15: Comparison model - experiments. The electrical model gives

nice agreement with the experimental data.

also a regime for which the drop vanishes entirely in the channel. A drop will

vanish entirely in the channel for volumes V such that V < WDλ.

4.5 Conclusions

Electrowetting was used to induce morphological transitions on topograph-

ically structured substrates between a reservoir drop and a liquid filament

in the channels. Above a threshold depending on the drop size and on the

aspect ratio of the channels, the length of the filament depends on the ap-

plied voltage and its frequency in agreement with an electrical model. The

threshold voltage is shown to depend on the reservoir pressure and on the

geometrical parameters of the channels. The length of the liquid filament

above the threshold depends on the frequency of the voltage source and on

the conductivity of the liquid and not on the drop pressure. It is moreover

shown that this length is independent on the contact angle saturation.
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This system can be used for microfluidic actuation of liquid in channels: here

a channel is wet on demand by a liquid using a simple voltage actuation. The

transitions are reversible with aqueous drops in air. An actuation system us-

ing this phenomenon would be an easy to use system since the drop has just

to be deposited on the channels. Moreover, the electrode used in all these

experiments can be replaced by a syringe in order to have a direct control on

the drop volume or composition.
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5.1. INTRODUCTION

5.1 Introduction

In the Chapter 4 we studied the static properties of the electro-actuation

of fluid in microchannels. We have showed that the liquid spreads to an

equilibrium position determined by the penetration length of the electric

voltage in the liquid finger λ.

λ =

√
1

ω

2Tσ

ε0εr

WD

W + 2D

This lengthscale discriminates two different regimes: when the length of the

liquid finger is much smaller than the equilibrium length, i.e. L � λ the

voltage along the finger is constant and equal to the voltage applied to the

drop. On the other hand, close to equilibrium L ≈ λ the voltage decreases

along the liquid finger and cannot be considered as homogeneous. This im-

plies that the description of the electric loss in the dynamics of the latest

stage of the spreading (L ≈ λ) is required.

We used the same experimental set-up as in the Chapter 4 to study the

dynamics of the filling at different voltages. The channels are etched in a

native conducting silicon wafer. An additional silicon oxide insulating layer

and an hydrophobic OTS monolayer have then been processed using stan-

dard procedures. The idea in the following is to determine the time-scales

of the filling dynamics and the relaxation to the equilibrium position both

experimentally and theoretically based on previous work on capillary spread-

ing. The actuation principle is based on capillary flow and the dynamics will

thus be compared to related systems, mainly the capillary rise and capillary

spreading in confined systems.

One of the first to study the spreading in confined system is Washburn

who examined how a liquid was rising in a cylindrical tube and reaches its

maximal static height named Jurin’s height [108] zJ , determined by the bal-

ance of capillary and gravity forces:

zJ =
2γ

ρgrt

cos θ (5.1)

with ρ, γ the density and surface tension of the liquid, g gravity acceleration,

rt the inner radius of the tube and θ the contact angle of the liquid on the
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tube. From Washburn’s analysis based on the balance of viscous dissipation,

gravitational and capillary forces arises the so-called Washburn law1 which

determines the dimensionless height z̃ = z/zJ of the liquid front as a function

of the dimensionless time t̃ = t/t0 in the absence of inertia [109],:

z̃
dz̃

dt̃
= 1− z̃ (5.2)

where

t0 =
16ηγ cos θ

ρ2g2r3
t

(5.3)

η being the dynamic viscosity of the liquid. In dimensionless units the equi-

librium position is z̃ = 1. At short times t ∼ 0, z̃ � 1, Eq. 5.2 is integrated

once leading to z̃ ∝ t̃1/2. The speed of rise is expected to diverge as v ∼ t−1/2.

The divergence is solved by a cut-off time below which inertia plays a role

and defines a maximal speed [109]. At large times, the square root behaviour

vanishes and the system relaxes to equilibrium. At the late stage of the rise

z̃ is close to 1 and is written as z̃ = 1− εz̃1 with ε � 1 which reduces Eq. 5.2

to z̃′1 = −z̃1 at the first order in ε. The height of rise relaxes exponentially

to equilibrium. Both asymptotic cases t ∼ 0 and t ∼ ∞ and the crossover

from one to another are described by the Washburn law.

The system we are presenting here involves more free surfaces than the cap-

illary tube and is intermediate between capillary rise and the spreading of a

drop. The latter problem has been studied by several authors and has been

summarized in a review by Oron et al. [110]. More recently Warren [111]

performed an analysis of the power law exponents for different driving forces

of the spreading and showed that these exponents are not only sensitive to

the driving force: the condition of spreading from a reservoir at constant

pressure and the condition of spreading at constant volume lead to different

exponents for the same driving force. Indeed to take the example of Wash-

burn’s law, a reservoir of liquid is placed at one side of the capillary and

ensures a constant pressure condition at the inlet of the capillary. In the case

of the spreading of a drop on a wetting substrate, there is no pressure reser-

voir but only conservation of the volume of the drop during the spreading.

A summary of the power law exponents is given in the Table 5.1

We restrict our discussions to capillary-driven spreading (gravity is ne-

glected). In the presence of a reservoir the table indicates that a character-

1The full calculation will be displayed and discussed in Section 5.3
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System Reservoir References

Yes No

Capillary-driven radial spreading –
1/7 (2-D)

1/10 (3-D)

Tanner [112],

Cazabat [113]

Gravity-driven radial spreading –
1/5 (2-D)

1/8 (3-D)

Cazabat [113],

Lopez [114]

Capillary-driven flow in a tube 1/2 – Washburn [108]

Inertial-Capillary flow in a tube 1 – Quéré [109]

Capillary rise in rough tubes 1.4 - 2 – Schäffer [115]

Capillary-driven flow between plates 1/2 – Dreyer [116]

Capillary-driven flow in a wedge 1/2 2/5
Romero [117],

Warren [111]

Capillary-driven flow on a stripe 1/2 1/5
Darhuber [118]

Warren [111]

Spreading on groove network 1/2 1/3 Warren [111]

Spreading on rough substrates – 1/4 - 2/5 Cazabat [113]

Electrocapillary flow on stripes 1/2 – Ahmed [119]

Electrocapillary flow in open-

channels

1/2 – see Section 5.2.2

Table 5.1: Summary of the power-law exponents for the spreading in different

systems. No reservoir means that the liquid volume is conserved during

spreading while Reservoir means that the liquid spreads from a reservoir

which supplies a constant pressure.
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istic exponent of 1/2 is expected and observed in most of the systems: wet-

ting and electro-wetting on stripe, capillary rise, flow in a wedge (triangular

grooves). . . It is thus natural to expect such an exponent in our experiments.

However the discussion is much richer when the constant pressure condition

is replaced by the constant volume condition. In this situation there is a

strong difference in the exponent even for similar systems, like the wetting

of a stripe (1/5) and in a wedge (2/5).

Several authors studied the spreading kinetics but fewer studied the re-

ceding dynamics. Attempts performed on the capillary fall showed that a

power law exponent of 1/2 is recovered for the height as a function of time.

For this particular system an overpressure maintained the liquid meniscus

above Jurin’s height and was released to study the relaxation to equilibrium.

For other systems, like wetting on a stripe such a pressure pre-actuation is

not possible since the free-surface would destabilize before the desired ini-

tial state is reached. Yet dynamics remain an important topic, particularly

because advancing and receding display different properties as illustrated in

these two typical examples:

1. for a drop sliding on an inclined surface a pearling instability at the

rear of the drop is observed above a critical speed [120, 121]. The origin

of the instability is due to a maximal speed that a receding line can

sustain which does not exist for an advancing contact line;

2. in triangular grooves ongoing work showed that a wedge can be filled

by electrowetting similarly to what has been done in the present work.

When the voltage is turned down, depending on the switch of contact

angle that is induced, the liquid finger either recedes or develops a

pearling instability leading to disconnected drops in the channel. The

dynamics of the emptying can thus be very different in the same system.

In rectangular grooves such an instability is not expected theoretically.

Indeed it can be shown that the wavelength of the most unstable mode

depends on the opening angle of the triangular groove and diverges at

0 degree opening angle. Asymptotically, a zero degree opening angle

corresponds to rectangular groove: no instability is expected and we did

not observe it in our system. In practical cases it is sufficient that the

wavelength of the instability be larger than the length of the channel
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to avoid the instability.

Our system allows to perform a pre-actuation of the liquid in the channel

and to study both advancing and receding dynamics.

5.2 Dynamics – Filling of the channel

We studied the dynamics of groove filling as a function of the applied voltage,

the frequency of the voltage source and the dimensions of the channels. Drops

were deposited on the grooves and the volume of fluid spread in the groove

was always a small portion of the total volume. The mother drop is thus

considered as a reservoir.

5.2.1 Experiments

As we have seen in Chap. 4, the frequency of the voltage source has an influ-

ence on the length of the liquid finger wetting the channel in the equilibrium

state. Except right at the transition, the equilibrium length is given by the

electrical length-scale λ. It has been demonstrated in Chap. 4 that the equi-

librium length is the result of the electrical loss along the liquid finger. The

voltage penetrates in the liquid only up to a length λ which limits the exten-

sion of the electrowetting effect and by consequence of the liquid finger to a

length ≈ λ.

In a first step, for simplicity, we will study the dynamics in the absence

of electric loss along the liquid finger, i.e. working at low frequency of the

voltage source (f1 = 1 kHz). Indeed in this situation, the total length of the

channel (2 mm) is smaller than the electric length scale λ: the voltage is thus

constant all along the liquid finger.

In a second step we study the relaxation to equilibrium working with a

voltage source at f2 = 20 kHz. The analysis of the dynamics will then be

performed in analogy with Washburn’s model.
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5.2.2 Low frequency, early stage of the spreading

The experiments are performed as follows. A drop of the solution is deposited

on the surface. A voltage larger than the threshold voltage is applied briefly

in order to induce the filling and to start the experiments with a Wenzel

drop. A voltage step from 0 to U0 is applied to the drop. The length of the

liquid finger is recorded as a function of time via a Philips DICA camera at

a frame rate close to 200 fps. The voltage is then turned back to 0 before the

liquid finger reaches the end of the channel to avoid any pinning at the edge.

Under these conditions, the equilibrium position is not reached, as displayed

in Fig. 5.1. The dynamics depend on the value of the applied voltage:
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Figure 5.1: Filling dynamics in open micro-channels at 1 kHz for different

applied voltages U0 (60, 65, 70, 75, 80 and 85 V). The equilibrium position

is not reached: the voltage is turned off before the liquid fills entirely the

channel. Inset: the dynamics display a power-law behviour of the length as

a function of time with an exponent 1/2.

1. for voltages below ≈ 45 V, no filling is observed as discussed in Chap. 4
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(data not shown).

2. between 45 V and 60 V, the liquid finger reaches an equilibrium position

determined by the electric loss. Since the relaxation to equilibrium will

be studied in the next section, these data are netther discussed nor

shown here.

3. above 60 V, the equilibrium length is not reached within the duration

of the experiments. The spreading dynamics shows a dependence on

the value of the applied voltage. In a logarithmic scale the data show

a power-law behaviour of the form:

L2(t) = κ× t (5.4)

on almost two orders of magnitude in time (see inset of Fig. 5.1). The

experiments show that an increase of voltage leads to an increase of κ:

the spreading in the channel becomes faster at higher voltages.

Analysis – Looking back to Washburn’s analysis, a power-law exponent

of 1/2 is the result of a constant driving force balanced by viscous dis-

sipation [108, 109] and has been reproduced in many systems [111, 118,

117], especially in Ahmed et al.’s experiment of electrophoretic actuation on

stripes [119]. In our case the length is smaller than λ which indicates that

the voltage is approximately constant along the liquid finger: the electric loss

is negligible and the contact angle of the liquid is homogeneous and deter-

mined without any ambiguity as Lippmann’s angle at the applied voltage U0.

The electrocapillary forces are thus constant and uniform in all the system

which ensures a constant driving force for the motion. The 1/2 power law is

the sign of the spreading at constant pressure difference (or constant driving

force) between the tip and the mother drop.

In a circular capillary tube the coefficient κ can easily be expressed analyt-

ically and is proportional to the cosine of the contact angle of the liquid in

the tube cos θ [108]. Decreasing the contact angle thus increases the value

of κ to a maximum reached for 0 degree contact angle. In our case the an-

alytical expression of κ requires the computation of the viscous dissipation

in an open channel which is a problem that has not been addressed to the

author’s knowledge. However κ is expected to differ only via a numerical

correction and the contact angle dependence should remain. Since we know
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that electrowetting enhances the wettability of the surface and lowers the

contact angle, the driving force of the spreading increases with an applied

voltage which explains the variations of κ with the voltage.

Conclusions – In the absence of electric loss, a liquid finger under elec-

trowetting conditions spreads in the grooves according to a power law be-

havior similar to capillary rise in a tube (in particular with an exponent 1/2:

L2(t) = κ × t). The coefficient κ is voltage dependent as a result of the

voltage dependence of the contact angle via Lippmann’s equation. A more

complete analysis on κ will be performed in the following section.

5.2.3 High frequency, equilibrium position

Working at 20 kHz the equilibrium length of the liquid finger is now close

to one millimetre, smaller than the channel length. Therefore the liquid

finger will reach the equilibrium length before the end of the channel. Upon

increasing the voltage from 0 to U0, the length of the liquid finger as a

function of time is extracted from the images and as expected reaches a

voltage dependent equilibrium position L∞ as studied in Chap. 4 (see Fig. 5.2,

Fig. 5.3, and Fig. 5.4 ).

This equilibrium length L∞ is measured as a function of applied voltage

for the different aspect ratios and gives the typical static plots shown in the

Chapter 4. From all the data a single length scale λ = 1.15/(1 + 2A)1/2 mm

is determined (see Fig. 5.5). This length scale is determined from the static

measurements and is used to rescale all the experimental lengths, using the

corresponding value of the aspect ratio A.

When the data are plotted in a logarithmic scale we observe the typical

power-law behaviour with 1/2 exponent at the early stage of the spread-

ing(i.e. at small lengths). Eq. 5.4 is slightly modified:

L2(t) ∼ κ× t, t ∼ 0 (5.5)

As before, the coefficient κ is a function of the applied voltage: increasing the

voltage increases the value of κ. Thus in the early stage of the spreading the

typical features observed at 1 kHz remain. The coefficient κ is now obtained
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Figure 5.2: Filling of the channels at 20 kHz (A = 1.33). Top: length at

U0 ∈ [49, 53, 58, 63, 68, 76, 85] V. The equilibrium length L∞ is reached after

a few seconds (bottom left). Bottom right: a power law exponent of 1/2 is

recovered in the early times of the spreading.

as the slope of L2(t) at t ∼ 0 and is plotted as a function of contact angle

obtained from the electrowetting curve in Fig. 5.6. The coefficient κ is a

linear function of the contact angle. At a threshold contact angle θT , κ is

equal to zero; above the threshold the linear relationship between κ and cos θ

shows that the system acts as a pure capillary system where the driving

force is proportional to the difference between the cosine of the contact angle

and the cosine of threshold contact angle. From this an intrinsic penetration

coefficient independent of the applied voltage (or on the contact angle) κ0

can be extracted:

κ = κ0 × (cos θL(U0)− cos θT ) (5.6)

When the voltage is above the threshold voltage of the filling, the coefficient

κ is positive. When the voltage is below UT , κ is negative which allows only
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Figure 5.3: Filling of the channels at 20 kHz (A = 1.00). Top: length at

U0 ∈ [53, 57, 62, 67, 75, 85] V. The equilibrium length L∞ is reached after a

few seconds (bottom left). Bottom right: the power law exponent of 1/2 is

recovered in the early times of the spreading.

receding contact lines.

κ ≥ 0 ↔ U0 ≥ UT (5.7)

It has thus been shown that κ is effectively linked to the contact angle: the

dynamics of the filling at the early stage is explained by considering that the

motion is driven by Lippmann’s contact angle. This will have consequences

in the following to explain the relaxation to equilibrium.

Note – Our system behaves similarly to capillary rise in a circular tube of

radius rt. Indeed, for a contact angle of 0 degrees in the tube, the coefficient

κc is simply γrt/2η which is usually corrected by the contact angle as κθ
c =

κc× cos θ. In the case of a capillary tube, the filling is obtained at 0 pressure

when the contact angle is smaller than 90 degrees. The threshold contact

angle of filling in a tube is thus 90 degrees. This leads to the same expression
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Figure 5.4: Filling of the channels at 20 kHz (A = 0.66). Top: length

at U0 ∈ [61, 65, 70, 76, 85] V. The equilibrium length L∞ is reached after a

few seconds (bottom left). Bottom right: a power law exponent of 1/2 is

recovered in the early times of the spreading.

as in Eq. 5.6 using cos θT = 0:

L2 =
γrt

2η

(
cos θ − cos

π

2

)
× t (5.8)

5.2.4 Conclusions

In the early filling stage, the spreading dynamics obtained in the absence of

voltage loss is recovered: the pressure difference is thus constant which indi-

cates that the voltage is constant and uniform. This result is in agreement

with the fact that the lengths are smaller than the penetration length λ.

In addition to the value of the equilibrium length, the applied voltage de-

termines the dynamics of the filling and gives a threshold for the filling via

the penetration rate κ. κ is directly linked to the wettability change and is

directly determined by the Lippmann contact angle. This ingredient will be

the starting point of the full description of the filling dynamics hereafter.
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Figure 5.5: Equilibrium length L∞ for the different aspect ratios. A single

length scale λ is defined: λ = 1.15/(1 + 2A)1/2 mm.

5.3 Modeling the dynamics

We are interested in modelling the full dynamics of the groove filling using

electrowetting. The model based on capillarity is extended to the dynamics

using the same tools as in the theoretical description of the filling of capillary

tubes (see Washburn 5.19 and Quéré [109]). Indeed, similarly to Washburn,

we expect (and observe) a saturation to a finite length. However the nature

of the equilibrium length is different: the increase of hydrostatic pressure

in Washburn’s law is here replaced by a loss of voltage along the liquid

finger. Instead of writing a force out of the electric loss we will consider

that the driving force related to electrowetting is decreasing when the liquid

finger increases: the basic idea will be to consider that the driving force is

the contact angle at the tip of the finger which is determined by the local

voltage at the tip from the Lippmann curve. First we will derive a simple

hydrodynamic model to express the viscous dissipation in the case of open-air

channels.
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Figure 5.6: Propagation coefficient κ as a function of the contact angle ob-

tained from the Lippmann curve. The propagation coefficient κ is propor-

tional to (cos θL − cos θT )

5.3.1 Capillary flow in an open air rectangular channel

Writing the excess of energy required to increase the length L of a liquid

finger at zero Laplace pressure by dL one finds:

dE

dLγΣls
=

Σlv
Σls

− cos θY (5.9)

where Σls is the surface area per unit of length which is wetted by the liquid

and Σlv the surface per unit of length of the liquid / vapor interface. Defining

cos θT = Σlv/Σls, we obtain:

dE

dLγΣLS

= cos θT − cos θY (5.10)

In the case of a closed and circular capillary tube ΣLV is zero thus cos θT = 0.

The transition occurs at 90 degrees. In the case of a channel with rectangular

cross-section and aspect ratio A one recovers the expression

cos θT = 1/(1 + 2A)
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In order to determine the dynamics of the filling we balance the excess of

capillary energy with the viscous dissipation. In the case of a closed circular

capillary one has [109]

8πηLL′ = −dE

dL
= γ2πr cos θY (5.11)

In our case the expression of the viscous dissipation has to be calculated

and depends a priori on the dimensions of the channel. The calculation

has to take the free-surface boundary into account and a non-slip boundary

condition at the solid / liquid interface. In order to determine the viscous

dissipation, we assume for simplification that the free-surface is flat which

corresponds to a situation where the Laplace pressure in the channel is con-

stant and equal to zero. We expect that the curvature of the free-surface will

lead to a minor correction in the flow rate expression that can be included if

necessary. The Stokes equation in a channel reads:

∂2vy

∂x2
+

∂2vy

∂z2
=

a

η
(5.12)

vy being the speed in the direction y of the channel while x and z are the

physical coordinates perpendicular to the flow and a is the pressure gradient

along the channel. This equation has been already solved for the mechanical

torsion of rectangular bars [122] or for flow in closed channel [123] using

Fourier decomposition. Our boundary conditions
vy(x = ±W/2, z) = 0

vy(x, z = 0) = 0
∂vy

∂z
(z = D) = 0

(5.13)

select different modes in the Fourier decomposition. Rescaling x and z by W

and vy by v0 = W 2a/η, one finds:

vy(x, y)

v0

=
4

π3

∑
n∈2N+1

(−1)(n−1)/2

n3
cos (nπx)

(
cosh (nπ(z − A))

cosh (nπA)
− 1

)
(5.14)

Examples of computed profiles are given for A ∈ {0.4, 0.5, 0.66, 1.00, 1.33}.
The first 25 terms of the sum have been taken into account. The velocity

profile can then be integrated in order to find the flow rate Q

Q = W 2v0

∫ 1/2

x=−1/2

∫ A

z=0

vy(x, z)

v0

dxdz = W 2v0F (A) (5.15)
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Figure 5.7: Flow profile in different rectangular open-channel. The free-

surface is assumed to be flat during the flow.

where F is a function of A only integrating the flow field. Q is on the other

hand equal to W ×D × dL/dt:

W ×D × dL

dt
=

W 4

η
aF (A) (5.16)

a is the pressure gradient δP/L with δP = γ(cos θ− cos θT )W+2D
WD

. After all,

the length of the liquid finger follows the differential equation:

2L
dL

dt
= κ0(cos θ − cos θT ) (5.17)

where: 
κ0 = κ∗ ×G(A)

κ∗ = 2γD
η

G(A) = F (A)× 1+2A
A3

(5.18)
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κ0 and κ∗ have the dimensions of a diffusion coefficient describing the way the

liquid diffuses in this simple porous medium. κ0 can be measured experimen-

tally and κ∗ is determined by the system parameters: with our parameters,

κ∗ ≈ 32 mm2/s. G(A) is a geometrical correction associated to the laminar

flow in the channel of aspect ratio A. Provided that L only is time dependent

the integration of Eq. 5.17 leads to a square root behaviour:

L2(t) = κ0(cos θY − cos θT )t (5.19)

Electrowetting is included in this model considering that the filling is due

to the wettability at Lippmann’s contact angle θL and not Young’s contact

angle. The behaviour of the fluid under the conditions of eletrowetting is

thus expected to follow a modified capillary rise equation:

L2(t) = κ0(cos θL − cos θT )× t (5.20)

The dependence on the voltage is only present in the contact angle. The

coefficient κ0 is found to be independent of the applied voltage and depends

only on the aspect ratio of the channel and the hydrodynamical parameters

of the liquid. A comparison between the calculated κ0 and the experimental

values of κ0 is given in Fig. 5.8. Even though the exact shape of the curve is

not reproduced the agreement is satisfactory in particular when considering

that we use no fit parameters. The model gives thus a qualitative agreement

for the dynamics: the power law behaviour and the values of the propaga-

tion coefficient κ0 are consistent with experimental observations. The shape

discrepancy may have several origins the most probable coming from the as-

sumption of a flat free-surface. This simple equation is valid as long as the

driving force of the invasion is constant: in the case of capillary rise this

means until gravity counteracts the rising motion and stabilizes the liquid

front at Jurin’s height; in electrowetting, the counteracting force is replaced

by the loss of voltage through the capacitive coupling: λ has been introduced

in the static case as the length-scale over which the voltage penetrates the

liquid finger. As long as L � λ, the voltage along the channel is constant

and defines only one contact angle and the liquid filament has to increase

following the square root law. The saturation to the finite length L∞ is rep-

resented by the increase of the contact angle at the tip due to the voltage

decrease. When it reaches the threshold contact angle the wetting is not

favourable any more, the driving force is then going to zero which means
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Figure 5.8: Comparison of κ0 obtained experimentally with the model based

on the computation of the fluid velocity: the full line corresponds to the

computation of G(A). κ∗ = (2γD/η) ≈32 mm2/s is obtained with the ex-

perimental values, η = 80 mPas, γ = 65 mN/m, D = 20 µm.

that the relaxation to the equilibrium will involve an exponential decay.

5.3.2 Relaxation to equilibrium

Washburn’s law is obtained for gravity counteracting surface tension propor-

tionally to the length of the liquid column. Here we make the assumption

that the variation of the voltage at the end of the filament defines locally

the wetting properties of the liquid in the channel and drive the liquid in the

channel:

2L
dL

dt
= κ0 × (cos θ(x = L)− cos θT ) (5.21)

The value of cos θ(x = L) is determined using the Lippmann curve for the

local voltage at the tip U(x = L) which has thus to be determined at any
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time. So far we only know that at t = 0, U(x = L = 0) = U0 and that at

equilibrium U(x = L∞) = UT .

In order to determined U(L) we first discuss the two main time-scales in

the system. The time scale of charging a liquid finger of length L is roughly

determined by the RC constant τel of the liquid finger which is simply written

as:

τel =
L

σWD
× ε0εr(W + 2D)L

D
=

L2

λ2
× 1

ω
(5.22)

Since L is always smaller or of order λ, τel < 1 ms in all the experiments.

On the other hand the time scale for the finger motion τhydro is of the order

1 s. We thus have:

τel � τhydro

This implies that electrical equilibrium is fulfilled during the motion of the

tip: the voltage in the finger is instantaneously redistributed during the

motion as a result of the change in the boundary conditions at L. As a

result the boundary condition of zero current at the tip is valid. In order

to determine the voltage along the channel, we have to solve the electrical

circuit presented in Chap. 4 (see also Appendix D):

d2U

dX2
= 2j

U(X)

λ2
(5.23)

without using the boundary condition U(L) = UT which is a condition of

hydrodynamic equilibrium. The voltage along a liquid finger of length L =

λ× l is thus a function of the position and of the length l:

U(x, l)2

U2
0

=
cosh2(x− l)− sin2(x− l)

cosh2 l − sin2 l
(5.24)

Eq. 5.24 is plotted in Fig. 5.9 for different liquid finger lengths and shows

that the voltage decay along the liquid finger is increasing with increasing

length. When l → ∞, Eq. 5.24 provides U(x, l) ∼ U0 exp(−x) which is

the classical exponential decay of a voltage along a coaxial cable using a

boundary condition at infinity. The enveloppe of the extrema is obtained

simply by taking x = l in Eq. 5.24:

U(l, l)2 =
U2

0

cosh2 l − sin2 l
(5.25)
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Figure 5.9: Voltage decay along the liquid finger for increasing dimensionless

lengths(0.5 - 4). At small lengths, the voltage is close to the applied volt-

age U0. When the length increases the voltage drop becomes increasingly

significant. The full line is the envelope of the extrema {x = l, U(l, l)/U0}.

At equilibrium the boundary condition used in the static case is recovered:

U(l∞, l∞)2 = U2
0 ×

1

cosh2 l∞ − sin2 l∞
= U2

T (5.26)

The voltage at the tip is equal to the threshold voltage which is only valid

at equilibrium. The system is out of equilibrium as long as U(l, l) > UT

and reaches equilibrium when U(l, l) = UT where l = l∞. The relationship

between the voltage is system-dependent via the experimental Lippmann

curve. From this analysis, the electric loss can be expressed as an opposing

force for the fluid motion in the channel. Two situations have to be discussed,

the ideal case of the Lippmann regime and the practical case we have here

with the experimental relationship between the contact angle and the voltage.

Ideal case – In the ideal case, the contact angle is determined by Lipp-

mann’s equation: cos θ = cos θY +(U0/UL)2. Combining Eq. 5.21 and Eq. 5.25
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one obtains:

2L
dL

dt
= κ0 ×

1

U2
L

(
U2

0

cosh2 l − sin2 l
− U2

0

cosh2 l∞ − sin2 l∞

)
(5.27)

The terms of the equations are then rearranged:

2L
dL

dt
= κ0 ×

U2
0 − U2

T

U2
L

− κ0
U2

0

U2
L

×
(

sinh2 l − sin2 l

cosh2 l − sin2 l

)
(5.28)

Eq. 5.28 is the exact analogue to Washburn’s law. The first term in the

equation is the driving force of the motion: the wettability at Lippmann’s

angle. The second term is an equivalent opposing force Fel which is here due

to the electric loss along the finger which can be compared to the hydrostatic

pressure in the Washburn law. The opposing force depends on the length of

the liquid finger L/λ:

Fel =
2γDG(A)U2

0

U2
L

×
(

sinh2 L/λ− sin2 L/λ

cosh2 L/λ− sin2 L/λ

)
(5.29)

In the absence of electric loss, λ is infinite and Fel is equal to zero. In the

balance of force the only remaining term is the electrowetting term which

balances the viscous dissipation. In the early stage of the spreading, one has

L/λ � 1 and Fel ∝ (L/λ)4, the opposing force is negligible, see Fig. 5.10. It

is only in the latest stage of the spreading that Fel becomes of the order of

the driving force leading to an exponential relaxation.

Our practical case – In our case and for the regimes of voltage considered

in the following the contact angle follows a simple linear law as a function of

the applied voltage. It should be noticed that we are not in the Lippmann

regime: here, above 40 V, we have a linear regime between the voltage and

the contact angle which fits with:

cos θL − cos θY = U0/ULL (5.30)

where ULL = 122V is determined from a linear fit of the electrowetting curve.

Eq. 5.21 can thus be re-written as

2ll′ =
κ0

λ2

UT

ULL

√cosh2(l∞)− sin2(l∞)

cosh2 l − sin2 l
− 1

 (5.31)
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Figure 5.10: Equivalent counteracting force to the spreading Fel coming from

the loss of voltage along the liquid finger. At short length, the opposing force

scales as L4 (dashed line). F0 = 2γDG(A)U2
0 /U2

L

The parameter τdyn

τdyn =
λ2

κ0

ULL

UT

(5.32)

is a time scale used as a fit parameter for the experimental data which roughly

corresponds to the time required to diffuse to a length of order λ. Equa-

tion 5.31 is solved numerically. For each value of U0 the value of τdyn is

determined by the fit. This value is expected to be independent of the ap-

plied voltage. The fits of the experimental data by the model are displayed

in Fig. 5.11 as well as the values obtained for the parameter τdyn. The fits

and the experimental data are in perfect agreement indicating that the model

used correctly describes the dynamics. Moreover τdyn is constant as soon as

U0 is sufficiently large compared to UT . It should be noted here that for each

model curve there is only one fit parameters, the time scale τdyn. The elec-

trical length-scale is experimentally determined from the equilibrium length:

λ× (1 + 2A)1/2 = 1.15 mm is used for all fits using the corresponding value
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Figure 5.11: Fits of the experimental curves with the model curve. The

only fit parameter is τdyn. The length is rescaled by λ. Top left, top

right and bottom left: fits for different voltages and aspect ratios of 1.3

(U0 ∈ [46, 49, 58, 68, 85]), 1.0 (U0 ∈ [50, 57, 64, 75, 85]) and 0.66 (U0 ∈
[60, 63, 68, 76, 85]) respectively. Bottom right: values of the fits used in the

graphs. The model predicts that τdyn is time independent which is observed

for voltages significantly above the threshold. The vertical dashed lines rep-

resent the position of the threshold for the different aspect ratios. The hori-

zontal lines represent the expectations from Eq. 5.32 which are 20% off.

of A. Once this parameter is fixed the time-scale is changed in order to find

the best fit with the experimental data. The variation of the time-scale τdyn
then plotted as a function of the applied voltage. Considering the model,

this time-scale is expected to be constant which is observed as soon as the

voltages are far enough from the threshold voltages as displayed in Fig. 5.11.

According to the previous work by Romero and Yost, our analysis is expected
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to break-down close to the transition [117] which could explain the behaviour

close to the threshold and the increase of the time scale. Another explanation

could be that close to the threshold the driving force has become smaller than

the pinning forces: the equilibrium length is thus not reached which leads to

an error on the determination of τdyn. In the end the discrepancy between

the experimental and “theoretical” time scales is around 20% which gives an

extremely reasonable agreement considering the rough approximations made

in the calculation of the flow rate in the channel. Moreover the values of τdyn
obtained in this way are consistent with the values obtained for κ0 according

to Eq. 5.32. It should also be noted that one can write an opposing force Fel
similarly to the ideal case. Here the balance of forces involves the viscous dis-

sipation Fvisc = 2ηLL′, the driving force Fwett = 2γDG(A)(cos θL − cos θT )

and the opposing force:

Fel = 2γDG(A)
U0 − U(x = L)

ULL

(5.33)

which can be written:

Fel = 2γDG(A)
U0

ULL

1− 1√
cosh2(L/λ)− sin2 L/λ

 (5.34)

For L � λ, Fel ≈ (L/λ)4 which indicates that the electric loss does not

influence the spreading. At equilibrium one obtains Fel(L∞) = Fwett.

Note on the general case – When the relationship between cos θ and U0

is given by an increasing function F(U0) = cos θ the opposing force reads:

Fel = 2γDG(A) (F(U(x = L))−F(U0)) (5.35)

The function U(x, L) do not depend on F as long as electrical equilibrium

is reached. Then Eq. 5.24 determines fully U(L, L). The only function that

has to be determined is thus F(U0), which is the Lippmann curve.

5.3.3 Discussions

The results and the model are in agreement under the assumption that the

contact angle at the tip of the liquid finger drives the liquid motion. Our

results indicate that the apparent contact angle is the right variable to study
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in order to determine the wetting dynamics. This implies more generally that

one does not have to consider the origin of the contact angle variation (elec-

tromechanical stress, Marangoni effect, chemical patterning of the surface,

. . . ), the dynamics being determined by the value of the contact angle at the

very position of the contact line. In his paper Jones [124] claims that “Any

or all of these mechanisms (causing the saturation) could simultaneously in-

fluence the contact angle and the electromechanical force”. We expect that

an analysis using Maxwell stress at the tip would deliver the same results

to those obtained using a capillary viewpoint. However the description in

terms of contact angle is convenient for the main reason described above:

the contact angle is the sign of the local wettability of the surface. Here our

argument is based on the assumption that the applied electric field effectively

modulates the liquid / solid surface energies: the contact angle reflects the

influence of electrical terms, however complicated they are. As long as the

electric term can be writen as surface terms in the energy function (which

leads to Lippmann’s equation for small voltages) the apparent contact angle

can be considered as the driving force of the liquid finger. Since capillary

rise is driven by surface forces, it is natural to use the value of the contact

angle as a boundary condition for the liquid rise (and thus as the driving

force). The relevant contact angle is the contact angle at the tip of the liquid

finger, which varies during the spreading from a value equal to the value of

the mother drop’s contact angle when the length of the liquid finger is small

down to the threshold contact angle when the finger reaches equilibrium.

This is expressed by the time dependence of cos θ(x = L).

The model based on the contact angle description can be transposed to

any other system which actively modulate the contact angle. As a simple

illustration, we will consider the case of actuation in a close cylinder (capillary

rise) of radius rt. The transition occurs at 90 degrees contact angle: the

actuation can be induced by the modulation of the contact angle if π/2

is within the range of accessible contact angles. The finite length effect in

electrowetting is due to the electric loss described by the length-scale λ which

in this case reads:

λ =

√
Tσrt

ε0εrω

As a comparison, in the case of Marangoni actuation, the liquid can be heated
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at one side of the capillary in order to decrease the contact angle while the

substrate is maintained at constant temperature. For contact angle below

90 degrees the liquid rises. It is then equivalent to a thermally conducting

rod that can exhibit thermal loss through the liquid / solid interface which

reduces the Marangoni effect at the tip of the finger. In this case the tem-

perature at the point x is given by a second order differential equation with

real coefficient and a thermal length scale appears [125]:

λTh =

√
rtσTh
hTh

where σTh is the thermal conductivity of the liquid and hTh is the heat

transfert coefficient at the solid / liquid interface. There is thus a direct link

between the two systems: {
σ ⇔ σTh

ε0εrω/T ⇔ hTh
(5.36)

In other words our model can be transposed to the case of thermal actua-

tion when the liquid is heated from a point source, taking into account the

finite thermal conductivity. However, the thermal system does not allow to

actively change λTh which is given by the material contrary to the electric

field actuation where the capacitive coupling is modulated by ω.

5.3.4 Conclusions

The filling dynamics of a microchannel under electrocapillary conditions has

been investigated. It shows that the dynamics are close to the Washburn

law:

1. the square root behaviour L ∝ t1/2 has the same origin as in the capil-

lary rise, a constant driving force: in the absence of electric loss or at

the early stage of filling the driving force is constant and determined

by Lippmann equation.

2. the relaxation to equilibrium is modelled by a dynamic loss of voltage

during the spreading which is shown to be linked to the change of con-

tact angle. The effect of the electric loss is to decrease the driving force

during the spreading. At equilibrium the driving force is 0. Formally

the electric loss can be written as an increasing opposing force to the

driving electrocapillary force.

153



CHAPTER 5. FLUID ACTUATION - DYNAMICS

These two elements are responsible for the Washburn like behaviour which

can be derived analytically. A comparison with the experiments shows a

nice agreement when the contact angle used for the computation is that

obtained from the experimental Lippmann curve. The electric field only

acts as a modification of the wetting properties: in the Lippmann regime

the wettability is modified by a simple electrostatic interaction while in the

saturation regime additional terms interplay.

5.4 Emptying

After having examined the filling dynamics, the dynamics of emptying are

now studied using the same experimental tools.

5.4.1 Experimental results

The emptying is studied experimentally by looking at the length of a liquid

finger when the voltage is quenched to 0 from different values U0 (giving

different initial lengths of the liquid finger). The experiments have been

performed on channels with different aspect ratios on various drops. The

length of the finger has been plotted as a function of time with a time origin

taken when the length of the finger is equal to zero.

The length displays a slight increase at early times: this is an experimental

artefact caused by the fast motion of the mother drop’s contact line when

the voltage is turned down. In the meantime the end of the liquid finger does

not move. After this increase, the liquid in the channel starts to recede. The

expected Washburn behaviour caracterized by a power law exponent of 1/2

has been observed with droplets of diameter much larger than the width of

the channels (see Fig. 5.12). In other experiments however, the power law

exponent slightly differs from this ideal case. The results are displayed in

Fig. 5.13 to 5.15 for the aspect ratios of 1.3, 1.0 and 0.66. All the curves

for the different initial length collapse on a master-curve which only depends

on the geometry of the channels (and most likely also on the viscosity of the

liquid): the original applied voltage has no influence except for setting up the

original length of the liquid finger. The universal curve defines a power law

exponent which appears to be close to 2/3 for all the aspect ratios studied

here (see Fig. 5.16).
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Figure 5.12: Emptying of the channel after filling. A = 1.0 and A = 0.5. The

curves align on a universal curve for voltages between 60 - 90 V reproducing

the expected Washburn law. L2 ∝ t
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Figure 5.13: Emptying of the channel after filling. A = 1.3. The curves align

on a universal curve for voltages between 60 - 90 V

In summary the behaviour of the liquid during the emptying does not

depend on the electrical parameters of the sytem (voltage and frequency of

the voltage source). The power law exponents varies in all the experiments

(about 50 data sets on various aspect ratio) between 0.5 and 0.7 without a

clear dependence on drop size.
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Figure 5.14: Emptying of the channel after filling. A = 1.0. The curves align

on a universal curve for voltages between 60 - 90 V
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Figure 5.15: Emptying of the channel after filling. A = 0.66. The curves

align on a universal curve for voltages between 60 - 90 V

5.4.2 Discussions

In the receding case the driving force is only linked to Young’s contact angle

since the voltage is 0. In other words the natural wetting properties of the

system control the dynamics. With the typical dimensions of the channel

and speed observed, small Reynolds number of order 10−4 indicates a lam-
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Figure 5.16: Power-Law behaviour at the capillary emptying: the exponent

is close to 2/3 in all cases. From top to bottom and left to right, A = 0.40,

0.50, 0.66, 1.00, 1.33. The last graph shows the comparison for A = 0.50,

0.66, 1.00, 1.33.

inar flow in the channel with negligible inertia. The motion starts as soon

as the driving force is settled: the time-scale of the acceleration is smaller

than the camera frame rate and the liquid recedes immediately with a speed

depending on its position in the channel. Indeed the speed at the length L
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is fixed by the pressure gradient δP/L where δP is constant: the pressure

gradient only depends on L and the position L(t) is thus a universal curve.

The filling experiments could also have been performed by setting the volt-

age down to values below the threshold voltage. Under these conditions, one

would have observed different curves depending on the voltage quench. Such

experiments are not shown here.

While filling exhibits a power-law of 1/2 at the early stage, the receding

exhibits different power law exponents between 0.5 and 0.7 for the whole

range of the relaxation. The reason for the uncertainty on the exponent is

yet unclear and should be the subject of a more accurate study. However,

when one refers to other exponent caracterization in capillary spreading one

observes that the determination of the exponent is relatively unaccurate. For

example Cazabat and Cohen observed exponents between 0.094 and 0.125 for

a spreading drop which gives an error bar of 23 %, and Chen about 30 %

variation in the determination of the exponent (this figures are available in

Ehrhard’s paper [126]). Here 33 % error is in the same order of magnitude

for the error bars. However one can wonder if the dispersion in the power

law is not coming from a more fundamental problem. It has not been pos-

sible considering the experiment performed here to find a particular reason

but some points should be investigated to improve the determination of the

power-law:

1. Influence of the liquid finger free-surface. The flow rate in the channel

is certainly modified by this additional free boundary and may lead to

a different exponent than expected.

2. Influence of the motion of the mother drop contact line. The exponent

1/2 is expected not only for a reservoir at fixed pressure but also at a

fixed position. The contact line of the drop is slighlty moving during

the experiment which may influence the dynamics.

3. Influence of the drop configuration. It has been difficult to observe any

influence of drop size but the variation of the drop shape in particular

at the moment where the liquid finger’s end is close to the drop may

produce a counter acting pressure that can slow down the motion of

the liquid finger leading to a smaller apparent power law exponent.
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4. Variation of the mother drop pressure: while the drop recedes, the

drop volume increases and thus its Laplace pressure decreases. The

condition δP is constant does not hold any more. In the case of filling,

one can write: L′ ∝ 1/L. Here we have L ∝ t2/3 thus L′ ∝ L1/2/L.

This means that the difference of pressure has to vary as δP ∝ L1/2.

This is not the case: the conservation of the volume and the spherical

cap assumption gives δP ∝ (V −WDL)−1/3 far from the simple scaling.

Nevertheless the exponent 2/3 may arise from a crossover regime from

a size-independent to a size dependent emptying.

5. Influence of contact angle. The viscous dissipation is maybe not correct

in its form. Including a viscous dissipation at the contact line would

be a solution. The contact angle is also sensitive to roughness. The

roughness of the channel may change the non slip boundary condition.

Moreover some other explanations can already be discarded:

1. Contact angle hysteresis could have a role here. However one would

expect an increase of the influence of hysteresis when the size decreases

which has not been observed.

2. Influence of electrical charges. The charges trapped in the insulating

layer may interact with the contact line which could result in slowing

down the contact line. The flow of kept charges through the insulating

layer after the voltage is set to zero is also a possibility. But no effect

has been observed by changing the frequency of the voltage source.

5.5 Application to on-chip liquid cooling

The system presented here gives a nice tool for fluid actuation due to the

reversibility of the flow. We studied this system as a way to perform on-

chip liquid cooling. Electrowetting liquid cooling has in fact already been

investigated in the drop geometry [127]. Using patterned electrodes a drop

is moved by electrowetting to a hot spot on a chip. In contact with the hot-

spot the drop temperature increases and after a given contact time the drop

is removed from the hot spot and diluted in a reservoir at room temperature
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at the side of the device2. There is thus a transfer of thermal energy from

the hot spot to the outside leading to an integrated cooling system. The

advantage is obvious: there is no mechanical part in this system and the flow

is electrically controlled.

In our case the system is based on the actuation of fluid in microchannels.

A reservoir is placed at the edge of the chip feeding microchannels etched

directly in the silicon of the chip. When a hot spot is detected, the liquid

actuation starts: the liquid fills the channels to the hot spot and heats up.

The voltage is turned down, the liquid recedes to the reservoir and is cooled

down. When the voltage increases, fresh water is again distributed to the

hot spot. Preliminary calculations were performed to determine the cooling

efficiency as a function of the frequency of liquid pulsation in the channels

and seem to indicate that an actuation at a about 1 Hz would already give

an efficient cooling [128]. This principle has been patented3 and work is still

in progress; only preliminary results are available.

The advantages of such a system can be discussed in terms of accessible

sizes: liquid in 15 µm channels is easily actuated at the millimetre scale. In

comparison a drop actuation on patterned substrates requires structures as

wide as long (square electrodes) due to the round shape of the drop. To

our knowledge no electrowetting system has yet presented actuation of 15

µm diameter drops. The channels can (easily) be patterned in between the

natural structures of the chip and potentially not only in the surface but also

in the three dimensions of the wafer, using existing technological solutions.

5.6 Conclusions

The dynamics of the filling and emptying of microchannels using electrowet-

ting has been investigated. It shows that the filling behaviour follows cap-

illary expectations and that electrical loss in the channel is the source of

relaxation to equilibrium via a Washburn-like law. The optimal actuation

for the liquid is obtained in the absence of electrical opposing force, leading

to a 1/2 power law exponent. The influence of the dimensions of the channel

2Using a drop as a reservoir and a system based on the self-excited oscillations of the
Chapter 3 would be a really nice solution to enhance the temperature homogenization !

3Patent PH NL040898EPP, A cooling system for electronic substrates
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is obtained from our model and is similar to capillary rise. The system dis-

played here shows a fluid actuation over 1 mm in about 1 s for a liquid about

100 times more viscous than water. Under these conditions we expect to see

an increased speed with water and an actuation over 1 cm in about 1 s or

over 1 mm in 10 ms which is of particular interest for microfluidic applica-

tions. A system based on a water solutions would have to be closed in order

to reduce evaporation. This experimental drawback is the main reason why

such a situation has not been studied but would be interesting in the future

since closed channels are more suitable for applications such as on-chip liquid

cooling where a free-surface is not required.

The system is thus driven by electrocapillarity and has been fully mod-

elled by the heterogeneous modulation of the surface tension by the applied

electric field. In the presence of homogeneous fields, the system behaves just

as a capillary system, using Lippmann’s contact angle. When the loss of

voltage along the channel is taken into account, the spreading stops at an

equilibrium length where the speed of the contact line reaches zero. The

filling dynamics depend on the electrical properties and the driving force for

fluid motion is linked to the electrical forcing exerted by the voltage. This

driving force acts at the tip of the liquid finger via the local electrowetting

properties and vanishes at equilibrium. In the emptying a simple Washburn

law is expected but the experiments showed a power law exponent distribu-

tion between 0.5 to 0.7.

The reversibility of the filling and emptying transition is a nice tool to

provide a microfluidic pumping device. Indeed the typical actuation times

are given by capillarity and one can make use of the ac-voltage for an optimal

control of the kinetics. Moreover this simple system can also be completed

by additional electrodes patterned in the substrates or coming on top. The

finite length saturation can for instance be switched on and off via a careful

choice of additional electrode positions. The maximal kinetics would then

be maintained by suppressing the electric effects. In particular in closed

channels, such a system could be used for on-chip liquid cooling. It has been

shown recently that the typical flow rates obtained here are compatible with

an efficient cooling in some applications [128].

161



CHAPTER 5. FLUID ACTUATION - DYNAMICS

162



Chapter 6

Conclusions and Outlook

163



CHAPTER 6. CONCLUSIONS

The main objective of this thesis was to actuate liquid at the millimetre

and micrometer size, to switch between liquid morphologies and to induce

motion of liquid structures on an active and controled way. Because we

wanted to have scalable system, the basis of the actuation is a tunable mod-

ulation of capillary forces by a voltage supply achieved by the electrowetting

effect.

Capillary transitions – Drops are known to display different shapes de-

pending on the constraints of the substrate on which they are deposited.

Morphological transitions have been predicted by different authors using pure

capillary models: these different morphologies have also been observed us-

ing surfaces of different wettabilities. Here we have studied the influence of

active wettablity changes on liquid behaviour by means of electrowetting:

the modulation of the surface wettability induced by an applied electric field

gives here a convenient way to reversibly actuate droplets. The influence of

wettability on the liquid behaviour has been studied in three cases: i) drop

deposition ii) drop oscillations and iii) open-capillary filling. The transitions

expected are correctly observed and they are reversible which provides an in-

teresting tool for microfluidics actuation. We have shown that the influence

of the electric field is fully captured by considering a capillary system with

an apparent contact angle according to the Lippmann curve. The transitions

occurs when Lippmann’s angle is equal to the threshold angle of the capillary

transition, in the drop deposition, the oscillating drop and the channel fill-

ing systems. Moreover, the dynamics model of capillary filling also indicates

that the dynamics of the electrowetting actuation is described in terms of

apparent local contact angles. However the Lippmann’s angle that has to

be considered is obtained by taking into account the loss of voltage due to

electric characteristics.

Electrical parameters – In addition to the capillary transitions, the in-

fluence of the electrical parameters on droplet actuation has been studied.

Beyond the transitions the droplet behaviour is not only determined by the

capillary parameters but also by the electrical parameters. In particular the

choice of AC or DC current is fundamental. We have shown that drop os-
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cillations can not occur for DC current: the condition χ � 1 required for

oscillations is not reached for DC where χ = 0. Since χ ∝ ω, we have an

active control on this parameter using AC frequencies and therefore on the

number of charges in the drop determined by χ. For channel filling the elec-

tric loss due to the capacitive coupling with the substrate was shown to be

the source of a length-scale λ. λ ∝ ω−1/2 is finite in AC fields and diverges

in DC fields: a liquid drop should disappear entirely in the channel to form

a liquid finger in DC fields; in AC fields λ determines the equilibrium length

of the liquid finger in a channel.

Beyond the transition, the electrical parameters provide an additional con-

trol on the system (via χ or λ) and an additional degree of freedom for

liquid manipulation compared to other systems, in particular to Marangoni

actuation. Since the transitions we studied are capillary driven they can be

induced in any system which shows an active change of the wettability. In

particular, the drop deposition/detachment criterion could be investigated

using the temperature dependence of surface tensions (and contact angles).

This holds for the fluid actuation in capillaries that could be induced by

Marangoni effect. But the contact angle modulation that can be achieved

using Marangoni effect is much smaller than that based on electrowetting:

Marangoni actuation is more sensitive to contact angle hysteresis. Moreover,

the additional control on the fluid behaviour via the frequency dependence

of λ or χ has no equivalent in Marangoni actuation.

In summary, we have shown that electrowetting is a convenient and ver-

satile tool to induce and study capillary transitions. It not only allows to

induce reversibly the transitions but also provides an additional control via

the active choice of the electrical parameters which is of potential interest for

microfluidics applications.

On-going and Future work – At this point, some elements related to

this work are still under investigation, among them I will mention, the study

of mixing efficiency in oscillating drops (group Physics of Complex Fluids,

University of Twente – NL), the actuation of fluid in open-air microchan-

nels with triangular cross-section (Max Planck Institute for Dynamics and

self-organization, Göttingen – D) and the study of on-chip liquid cool-

ing using electrowetting on drops or microchannels (University of Leuven –
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Be) and of course the electrowetting fundamental problems still under de-

bate, for example the contact angle saturation and the oil / water / solid

interface. This work could be extended in different directions, the deposi-

tion/detachment problem could be studied using vesicles or cells. In this

case, the additional constraints on the area of the body would probably mod-

ify the results. The stiffness of the vesicule and the strength of adhesion forces

should have a role that could be interesting to study. One could then detect

anormal cells which would have non-regular behavior. The oscillations of

a drop could be studied when the drops are driven at a given frequency.

It would be interesting to determine the amplitude of drop oscillations as a

function of voltage frequency and see if resonance peaks can be observed.

These peaks should be linked to the frequencies obtained in the self-excited

mode. It could be interesting to use a sytem without electrode, a reversed

system of oil drop in water. The electroactuation could be also studied

in the case of close channels or capillaries. In this case the threshold is 90

degrees which gives a wide range of contact angles to study the dynamics.

Moreover, more complex systems could be investigated in order to provide

real microfluidic components.
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A.1 List of symbols

Mathematical symbols

Symbol Name Caracteristics

j Imaginary unit j2 = −1

e, exp Exponential constant ln e = 1

π ≈ 3.14159

ε “small” parameter

∆. Laplace-Beltrami operator

‖ . . . ‖, | . . . | Norm, modulus

Physical symbols

Symbol Name Typical Unit

Value ≈

g Acceleration of gravity 9.81 m/s2

kB Boltzmann constant 1.38 ×10−23 J/K

ε0 Dielectric constant of vacuum 8.8 ×10−12 F/m

t Time s

Θ Temperature K

x, y, z Cartesian coordinates

r, z Cylindrical coordinates
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Fluid caracteristics

Symbol Name Typical Unit

Value ≈

ρ Density 0.7 - 1.3 kg/m3

σ Electrical conductivity 0.01 - 1 S/m

γ Surface tension 38 - 72 mN/m

η Liquid viscosity 1 - 100 mPa×s

Lc Capillary length 1-8 mm

Dimensionless numbers (typical speed v, length l)

Number Name Expression

Ca Capillary Number ηv/γ

Bo Bond Number ρgl2/γ

We Weber Number ρv2l/γ

Oh Ohnesorge Number η/
√

ρlγ

Re Reynolds Number ρvl/η

Li Lippmann Number (ε0εU
2/2T )/γ

χ Dimensionless Number 2πf(R0Ctµ0)1/(µ+1)
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Systems

Symbol Name Typical Unit

Value ≈

T Thickness of insulating layer 1.1 ± 0.1 µm

re, (ri
e) Electrode radius (internal) 50 - 250 µm

ze, zs Electrode, substrate altitude mm

rt Capillary tube inner radius mm

d, dmax Distance electrode / substrate 0.5 - 2 mm

F Frequency of oscillations 10-150 Hz

W Width of microchannels 15-50 µm

D Depth of microchannels 10-20 µm

A Aspect ratio D/W 0.20 - 1.33 –
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Drops

Symbol Name Typical Unit

Value ≈

θY Young’s contact angle 100 - 160 degrees

θL Lippmann’s contact angle 45 - 160 degrees

θ Apparent contact angle degrees

θa (θr) Advancing (Receding) angle degrees

γsl,sv,lv Surface tensions mN/m

V , Ω Drop Volume 0.1 - 10 µL

S Solid surface wetted by the drop 1 mm2

Σ Drop external surface 1 - 0 mm2

h Drop height .5 - 8 mm

r0 Drop Radius 0.1 - 2 mm

rs Radius of wetted surface 1 mm

rmin Minimal radius of a neck 0-0.5 mm

r1,2 Parameters of Undoloids

α Tilt angle of undoloids 0- π degrees

Es,Σ Surface energies J

EV Body energies J

P , δP Pressure, pressure difference Pa

M Mean Curvature m−1

vx, vy, vz Liquid velocities m.s−1

Q Flow rate m3.s−1

zJ Jurin’s Height mm

L, L∞ Length of liquid finger 0 - 2 mm

λ Electrical lengthscale 0 - 10 mm

l Rescaled length L/λ –

t0,1,2 Typical time s

µ Exponent of resistance divergence 0.8 -1.5 –

ν Exponent of capillary breakup 2/3 - 1.0 –

κ , κ0, κ∗ Propagation coefficient in channels m2/s
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Electrical parameters

Symbol Name Typical Unit

Value ≈

εr Relative permitivitty of SiO2 2 - 4 –

U0, UT , U(x) Voltage 0 - 120 V

f , fT Frequency of voltage (in AC) 1 - 30 kHz

ω 2πf rad/s

τ Electrical period 0.05 - 1 ms

C Electrical capacitance 10−11 - 10−9 F

R, Rd, Rn, Rm Electrical resistance 1 - 105 Ω

Z Electrical impedance Ω

q Electrical charge C

Q, Qmax Dimensionless charge Q/CU –

I, I0, Imax, i Electrical current A

Miscellaneous

Symbol Name Typical Unit

Value ≈

τel Electrical timescale s

τhydro Hydrodynamic timescale s

τdyn Dynamic timescale of channel filling s

v0 Typical speed m/s

Fvisc Viscous force N

Fwett Capillary force N

Fel Electrical counteracting force N

a Pressure gradient Pas/m

σth Thermal conductivity W/mK

hth Heat transfert coefficient W/m2K

λth Thermal lengthscale m
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All the experiments have been performed on silicon wafers (n+ arsenic

doped, resistivity 1 – 5 mΩ× cm).

B.1 Fluids

We usually used as a fluid for electrowetting mixtures of glycerol, water and

salt (Sodium Chloride). Different ratio of glycerol water and salt have been

used in order to control the viscosity and electrical conductivity of the fluid.

As surrounding phase silicon oil has been used, either Wacker AK5 (viscosity

≈ 5 mPa × s )or Fluka DC200 (viscosity ≈ 10 mPa × s ).

B.2 Processing of the silicon wafers

In all the experiments, we used conductive silicon wafer In order to produce

topographies in the substrate, a positive mask for photolithography has first

been designed processed in Dupont. The following steps have then been

realized:

• A polymer resist is spin-coated on the wafer.

• The wafer is UV-illuminated through the mask and rinsed.

• The anisotropic ion etching steps [129] are performed.

• A silicon oxide layer has been thermally grown up to 1 µm on top of

the wafers.

At the end of the process an additional hydrophobic coating has been formed

using standard protocol [72].

• The silicon surface are carefully cleaned and activated using Piranha

solution.

• The wafers are placed in a bath of OTS and solvent.

• The wafers are rinsed with chloroform.

The first time the substrates are used a special cleaning is applied in order

to get rid of the excess of reactants at the surface. The wafers are thus
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successively cleaned in ultrasonic bath of acetone (1 hour), ethanol (1 hour)

and toluol (1 hour). In between each bath the samples are dried by nitrogen

flow.

In order to control the sizes of the features etched in the wafer SEM pictures

of a sample have been taken. Since the method is destructive the pictures

have been taken only at the end of the experiments. The pictures presented

here are given for the smallest and largest aspect ratio (Fig. B.1). The

etching process could give different depth as a function of the aspect ratio of

the features that are etched. It is not the case here and the final dimensions

are the one that have been chosen. The roughness is the consequence of the

etching process. It should be noticed that this roughness is anisotropic: it

will influence marginally the flow along the channel.

Figure B.1: Microchannels in silicon wafer (Top line D = 20µm, W = 15µm,

A = 1.33, Bottom line: D = 20µm, W = 50µm, A = 0.4). The insulating

layer is also visible.

B.3 Contact angle measurement

At the end of the process the static contact angles of water on the surface

are 109 degrees advancing 102 degrees receding in air environment defining

to a static hysteresis of 5-7 degrees B.2. All the contact angle have been

measured using side view of a the sessile drop using OCA-30 hard- and soft-

ware. The value of the contact angle is a good indication of the quality of
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the layer as well as the small contact angle hysteresis. The physical origin of

the hysteresis is probably the reorganization of the monolayer at the contact

line [8].

4 4.1 4.2 4.3 4.4 4.5
rs [a.u.]

95

100

105

110

 θ

Advancing

Receding

Figure B.2: Static hysteresis 109 - 105 degrees. rs is the radius of the area

wetted by the drop.

B.4 Preparation of samples for electrowetting

After one day in air it has been observed that the contact angle hysteresis

was increasing leading to unreproducible results. In order to avoid this effect

the samples are cleaned the day they are used in ultrasonic bath of acetone,

ethanol and toluol a few minutes in each bath. The samples are then placed

on a glass plate and glued to a copper wire using conducting epoxy or silver

painting.

B.5 Electrowetting

The electrowetting set-up consist in a low frequency generator (Agilent) and

an amplifier (Philips home made). The range of voltage accessible to the

amplifier is 0-400 V (rms) but we used it only up to 125 V (rms). The rms

values of the voltages are measured via a standard multimeter and the full

signal is displayed on an oscilloscope (HP). The low frequency generator is

connected to a computer and is driven in some case via a Labview routine.
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C.1 Unduloids

C.1.1 Introduction

Any axi-symmetric surface with a constant mean curvature is a so called

Delaunay surface [73] as displayed in Fig. C.1. The subfamily of stretched

Delaunay surface is the unduloid family.

The analytical expressions of these shapes are known and are given in the

case of unduloids which are studied in the following. Some details on nodoids

can be found in Martin Brinkmann’s thesis [17] or in Langbein’s book [74].

C.1.2 Parametrization

We have used the parametrization of the shape based on the maximal radius

r2 and the minimal radius r1 of the unduloid for r ∈ [r1, r2]. The rest of

the unduloid is obtained by symmetry and periodisation as displayed in the

Fig. C.2:


u(r1, r2, r) = arcsin

√
r2
2(r2−r2

1)

r2(r2
2−r2

1)

z(r1, r2, r) = r2E(u(r2, r1, r), k)

+r1F (u(r2, r1, r), k)

− (r2
2−r2

1) cos u(r1,r2,r) sin u(r1,r2,r)√
r2
2 cos2 u(r1,r2,r)+r2

1 sin2 u(r1,r2,r)

(C.1)

where u ∈ [0, π/2], (u(r1, r2, r1) = 0) and (u(r1, r2, r2) = π/2); the elliptic

integral E and F and k are defined as:

{
E(u, k) =

∫ u

0
dv(1− k2 sin2 v)1/2

F (u, k) =
∫ u

0
dv(1− k2 sin2 v)−1/2

(C.2)

k =

√
r2
2 − r2

1

r2
2

(C.3)
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Figure C.1: Examples of Delaunay surfaces for different sets of parameters

{r1, r2}. Top, from left to right: nodoids ({2, 10}, {5, 10}, {7, 10}); Midle,

from left to right: unduloids ({2, 10}, {5, 10}, {7, 10}); Bottom, limiting

shapes, from left to right: Sphere {r1 = 0, r2}, catenoid {r1, r2 = ∞} and

cylinder {r1, r2 = r1}.
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r1
r20 r1

r20

α

r

r

Σ

C

B

A

V

Figure C.2: Unduloid parameters: α is the tilt angle, V the volume and Σ

the external surface area.

Point Caracteristics u z r

A Minimal Radius 0 0 r1

B Inflexion Point arcsin
√

r2

r2+r1

√
r1 × r2

C Maximal radius π/2 r2E(π
2
, k) + r1F (π

2
, k) r2

Table C.1: Special Points

C.1.3 Volume

The volume V of a portion of unduloid starting between r = r1 and r ∈ [r1, r2]

is:

3
π
× V (r1, r2, r) = (2r2(r

2
1 + r2

2) + 3r1r
2
2)× E(u(r1, r2, r), k)

−r2r
2
1F (u(r1, r2, r), k)

−(−r2 + 2(r2
1 + r2

2) + 3r1r2)

× (r2
2−r2

1) cos u(r1,r2,r) sin u(r1,r2,r)√
r2
2 cos2 u(r1,r2,r)+r2

1 sin2 u(r1,r2,r)

(C.4)

The expression of the volume of a unduloid depends on its class. For example

when the unduloid is limited by re at one side and rs at the other side the

expression for the un-necked unduloid at θ > π is:

V (r1, r2, re, rs) = 2× V (r1, r2, r2)− V (r1, r2, re)− V (r1, r2, rs) (C.5)

and for the necked unduloid at θ > π:

V (r1, r2, re, rs) = 2× V (r1, r2, r2) + V (r1, r2, re)− V (r1, r2, rs) (C.6)
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The volume in the other situation is determined by linear combination of the

volume V .

C.1.4 Surface area

The surface area Σ of a portion of unduloid starting between r = r1 and

r ∈ [r1, r2] is:

Σ(r1, r2, r) = 2π(r2 + r1)×

(
r2E(u(r1, r2, r), k)−

√
(r2

2 − r2)(r2 − r2
1)

r

)
(C.7)

The full expression depends on the class of the unduloid and is obtained

similarly to the volume.

C.1.5 Tilt angle

The angle α made by the tangent to the unduloid surface to the horizontal

plane which is related to contact angle is obtained by derivation of z with

respect to r:
dz

dr
=

r2 + r1r2√
(r2

2 − r2)(r2 − r2
1)

(C.8)

leading to:

cos α(r1, r2, r) =
(r2 − r1) sin u(r1, r2, r) cos u(r1, r2, r)√
r2
2 cos2 u(r1, r2, r) + r2

1 sin2 u(r1, r2, r)
(C.9)

C.2 Spherical cap

For clarity some mathematical expressions used in the manuscript are devel-

oped here for a drop of given volume V deposited on a flat substrate with a

contact angle θ as displayed in Fig. C.3

h(θ, V ) =
(

3V
π

)1/3 × 1−cos θ

(2−3 cos θ+cos3 θ)1/3

r0(θ, V ) =
(

3V
π

)1/3 × 1

(2−3 cos θ+cos3 θ)1/3

rs(θ, V ) =
(

3V
π

)1/3 × sin θ

(2−3 cos θ+cos3 θ)1/3

S(θ, V ) = π
(

3V
π

)2/3 × sin2 θ

(2−3 cos θ+cos3 θ)1/3

Σ(θ, V ) = 2π
(

3V
π

)2/3 × 1−cos θ

(2−3 cos θ+cos3 θ)1/3

(C.10)
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θ

s

r0 h

S

Σ

θ

r

Figure C.3: Spherical cap
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APPENDIX D. THE FREE-ENDED COAXIAL CABLE

D.1 Physical description

We want to find the distribution of voltage along an electricaly conducting

liquid finger of length L free to move surrounded by a insulating layer. The

driving voltage U0 at frequency ω is applied at one edge of the liquid finger at

X = 0. The liquid conducitivity is σ, the insulating layer thickness is T , its

dielectric constant ε0εr. The channels depth and width are D and W . The

liquid finger is assumed to be flat and we neglect the curvature at the tip in

X = L. The system is equivalent to a free-ended coaxial cable described by

the equivalent electrical circuit of Fig. D.2.

0
�
�
�
�

�
�
�
�

� � � � � � � �
� � � � � � � �
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� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

U(X+dX)U(X)

X=0
X=L

X
dX

U

dX

D
W

Figure D.1: Simple model for the liquid finger in a channel.

dR

dZ cdZ cdZ c
U(X=L)

X=L

0U

X=0

dZ c

U(X−dX) U(X) U(X+dX)

dr dR dR

Figure D.2: Equivalent electrical circuit for the liquid finger.

U(x) is the complex voltage at X which depends on the voltage at U(X−
dX) and U(X + dX) via:

U(X)

(
2 +

dR

dZc

)
= U(X + dX) + U(X − dX) (D.1)

where dR = dX/(σWD) and dZc = T/(jωε0εr(W + 2D)dX) are the resis-

tance and capacitive impedance of a piece of liquid of length dX. Using

U(X + dX)− 2U(X) + U(X + dX) =
d2U
dX2

(dX)2

Eq. D.1 reduces to:
d2U(X)

dX2
= 2j

U(X)

λ2
(D.2)
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where

λ =

√
2Tσ

ωε0εr

WD

(W + 2D)

D.2 Solution

U(x) is a complex function of the real variable x (j being the complex unit

j2 = −1) and U(x) = ‖U(x)‖ the physical amplitude of the voltage. x is the

dimensionless coordinate along the groove X/λ. U(x) fulfils:

d2U(x)

dx2
= 2jU(x)

U(x) is decomposed on a basis of exponential function:

U(x) = A× er1x + B × er2x

where {r1, r2} are the complex roots of the characteristic equation r2−2j = 0:

r1 = 1 + j and r2 = −1− j and A and B complex values determined by the

boundary conditions. We define A = ‖A‖ and B = ‖B‖.

Condition 1 – Electrical equilibrium reads dU

dx (x=l)
= 0 ⇔ dU

dx (x=l)
= 0

leading to:

B = A× e2(1+j)l ⇒ U(x) = A× el ejl ×
(
ex−lej(x−l) + el−xej(l−x)

)
and thus:

U(x) = A× el ×
∥∥ex−lej(x−l) + el−xej(l−x)

∥∥
Condition 2 – Using the second boundary condition U(x = 0) = U0 ⇔
‖U(x = 0)‖ = U0, one finds:

A× el =
U0

‖e−le−jl + elejl‖

Hence:
U(x)

U0

=

∥∥∥∥ex−lej(x−l) + e−(x−l)e−j(x−l)

e−le−jl + elejl

∥∥∥∥
then,

U(x)

U0

=

∥∥∥∥cos(x− l) cosh(x− l) + j sin(x− l) sinh(x− l)

cos(l) cosh(l) + j sin(l) sinh(l)

∥∥∥∥
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(
U(x)

U0

)2

=
cos2(x− l) cosh2(x− l) + sin2(x− l) sinh2(x− l)

cos2(l) cosh2(l) + sin2(l) sinh2(l)

Since ∀x ∈ R, cosh2(x)− sinh2(x) = 1, and cos2(x) + sin2(x) = 1,

U(x)

U0

=

√
cosh2(x− l)− sin2(x− l)

cosh2(l)− sin2(l)

This equation is used when the liquid finger is out of hydrodynamical equi-

librium.

Condition 3 – At equilibrium, l = l∞ is determined by U(x = l∞) = UT

leading to:

U0

UT

=

√
cosh2(l∞)− sin2(l∞)

0 1 2 3 4 5
U0/UT

0

1

2

3

l ∞

Figure D.3: Equilibrium length as a function of the applied voltage.

Asymptotic – The development in Taylor series for l∞ ∼ 0 gives:√
cosh2(l∞)− sin2(l∞) = 1 +

1

3
l4∞ −

11

210
l8∞ +O(l12∞)

Therefore for U0 − UT ∼ 0+, l∞ ∼ 31/4
(

U0

UT
− 1
)1/4

.

For l∞ ∼ ∞, the hyperbolic cosine dominates: U0

UT
∼ el∞

2
⇔ l∞ ∼ ln

(
2 U0

UT

)
.
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Actualités scientifiques et industrielles, 373(1):5–36, 1936.
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